Tasneem Elmakki , Sifani Zavahir , Ho Kyong Shon , Guillermo Hijós Gago , Hyunwoong Park , Dong Suk Han
{"title":"使用 LiMn2O4 和 LiAlO2 混合材料的电容式锂捕获系统","authors":"Tasneem Elmakki , Sifani Zavahir , Ho Kyong Shon , Guillermo Hijós Gago , Hyunwoong Park , Dong Suk Han","doi":"10.1016/j.desal.2024.118195","DOIUrl":null,"url":null,"abstract":"<div><div>The increasing demand for lithium (Li), a crucial material in various industries, requires efficient recovery methods and a shift toward a circular economy. This study investigates a fast, eco-friendly technique for selective Li recovery, emphasizing the use of innovative materials from spent Li-ion batteries (SLiBs), particularly LiMn<sub>2</sub>O<sub>4</sub>(LMO)/LiAlO<sub>2</sub>(LAO)-based materials, to enhance Li's circular economy. Conventional Li recovery methods typically involve prolonged processes with chemical additives and environmental concerns, whereas electrochemical systems like membrane-based capacitive deionization (MCDI) offer promising high removal capacities, regeneration ability, and scalability. However, no commercial electrochemical Li recovery system underscores the need for continued research to improve their performance. This study employs MCDI for selective Li recovery, examining various electrode materials, including commercial activated carbon, LMO-based electrodes, and modified LMO/LAO-based electrodes. The mixed LiMn<sub>2</sub>O<sub>4</sub>/LiAlO<sub>2</sub> cathode exhibited high selectivity for Li<sup>+</sup> extraction with a recovery efficiency of 83.1 %, achieving a deionization capacity of 38.15 mg/g at 1.0 V under an initial feed concentration of 5 mM LiCl. The Li<sup>+</sup> adsorption reached 900 μmol/g, with a separation factor (<span><math><msubsup><mi>α</mi><msup><mi>Mg</mi><mrow><mn>2</mn><mo>+</mo></mrow></msup><msup><mi>Li</mi><mo>+</mo></msup></msubsup><mo>)</mo></math></span> of 3.77 (C<sub>Mg</sub><sup>2+</sup>/C<sub>Li</sub><sup>+</sup> = 1), setting a robust foundation for a comprehensive Li recovery framework that meets the increasing Li demand while minimizing environmental impact.</div></div>","PeriodicalId":299,"journal":{"name":"Desalination","volume":"593 ","pages":"Article 118195"},"PeriodicalIF":8.3000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Capacitive lithium capture system using a mixed LiMn2O4 and LiAlO2 material\",\"authors\":\"Tasneem Elmakki , Sifani Zavahir , Ho Kyong Shon , Guillermo Hijós Gago , Hyunwoong Park , Dong Suk Han\",\"doi\":\"10.1016/j.desal.2024.118195\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The increasing demand for lithium (Li), a crucial material in various industries, requires efficient recovery methods and a shift toward a circular economy. This study investigates a fast, eco-friendly technique for selective Li recovery, emphasizing the use of innovative materials from spent Li-ion batteries (SLiBs), particularly LiMn<sub>2</sub>O<sub>4</sub>(LMO)/LiAlO<sub>2</sub>(LAO)-based materials, to enhance Li's circular economy. Conventional Li recovery methods typically involve prolonged processes with chemical additives and environmental concerns, whereas electrochemical systems like membrane-based capacitive deionization (MCDI) offer promising high removal capacities, regeneration ability, and scalability. However, no commercial electrochemical Li recovery system underscores the need for continued research to improve their performance. This study employs MCDI for selective Li recovery, examining various electrode materials, including commercial activated carbon, LMO-based electrodes, and modified LMO/LAO-based electrodes. The mixed LiMn<sub>2</sub>O<sub>4</sub>/LiAlO<sub>2</sub> cathode exhibited high selectivity for Li<sup>+</sup> extraction with a recovery efficiency of 83.1 %, achieving a deionization capacity of 38.15 mg/g at 1.0 V under an initial feed concentration of 5 mM LiCl. The Li<sup>+</sup> adsorption reached 900 μmol/g, with a separation factor (<span><math><msubsup><mi>α</mi><msup><mi>Mg</mi><mrow><mn>2</mn><mo>+</mo></mrow></msup><msup><mi>Li</mi><mo>+</mo></msup></msubsup><mo>)</mo></math></span> of 3.77 (C<sub>Mg</sub><sup>2+</sup>/C<sub>Li</sub><sup>+</sup> = 1), setting a robust foundation for a comprehensive Li recovery framework that meets the increasing Li demand while minimizing environmental impact.</div></div>\",\"PeriodicalId\":299,\"journal\":{\"name\":\"Desalination\",\"volume\":\"593 \",\"pages\":\"Article 118195\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Desalination\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0011916424009068\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Desalination","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0011916424009068","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Capacitive lithium capture system using a mixed LiMn2O4 and LiAlO2 material
The increasing demand for lithium (Li), a crucial material in various industries, requires efficient recovery methods and a shift toward a circular economy. This study investigates a fast, eco-friendly technique for selective Li recovery, emphasizing the use of innovative materials from spent Li-ion batteries (SLiBs), particularly LiMn2O4(LMO)/LiAlO2(LAO)-based materials, to enhance Li's circular economy. Conventional Li recovery methods typically involve prolonged processes with chemical additives and environmental concerns, whereas electrochemical systems like membrane-based capacitive deionization (MCDI) offer promising high removal capacities, regeneration ability, and scalability. However, no commercial electrochemical Li recovery system underscores the need for continued research to improve their performance. This study employs MCDI for selective Li recovery, examining various electrode materials, including commercial activated carbon, LMO-based electrodes, and modified LMO/LAO-based electrodes. The mixed LiMn2O4/LiAlO2 cathode exhibited high selectivity for Li+ extraction with a recovery efficiency of 83.1 %, achieving a deionization capacity of 38.15 mg/g at 1.0 V under an initial feed concentration of 5 mM LiCl. The Li+ adsorption reached 900 μmol/g, with a separation factor ( of 3.77 (CMg2+/CLi+ = 1), setting a robust foundation for a comprehensive Li recovery framework that meets the increasing Li demand while minimizing environmental impact.
期刊介绍:
Desalination is a scholarly journal that focuses on the field of desalination materials, processes, and associated technologies. It encompasses a wide range of disciplines and aims to publish exceptional papers in this area.
The journal invites submissions that explicitly revolve around water desalting and its applications to various sources such as seawater, groundwater, and wastewater. It particularly encourages research on diverse desalination methods including thermal, membrane, sorption, and hybrid processes.
By providing a platform for innovative studies, Desalination aims to advance the understanding and development of desalination technologies, promoting sustainable solutions for water scarcity challenges.