{"title":"利用 DEM 仿真开发湿式搅拌球磨设计方法","authors":"","doi":"10.1016/j.apt.2024.104689","DOIUrl":null,"url":null,"abstract":"<div><div>A design method for wet stirred ball milling by the simulation using the Discrete Element Method (DEM) was developed. The method optimized milling conditions for wet stirred ball milling by using the simulation to search for the optimal milling condition that maximizes a milling performance indicator. The milling performance indicator was defined in such a manner that the value of the indicator was maximized when more target particles with the desired particle diameter were produced in less milling time and with lower power consumption and less contamination. Furthermore, it was confirmed that the optimal milling condition estimated by the simulation agreed with the experiments. Therefore, it was suggested that the developed method has the potential to design the milling conditions of the wet stirred ball milling.</div></div>","PeriodicalId":7232,"journal":{"name":"Advanced Powder Technology","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of design method for wet stirred ball milling by simulation using DEM\",\"authors\":\"\",\"doi\":\"10.1016/j.apt.2024.104689\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A design method for wet stirred ball milling by the simulation using the Discrete Element Method (DEM) was developed. The method optimized milling conditions for wet stirred ball milling by using the simulation to search for the optimal milling condition that maximizes a milling performance indicator. The milling performance indicator was defined in such a manner that the value of the indicator was maximized when more target particles with the desired particle diameter were produced in less milling time and with lower power consumption and less contamination. Furthermore, it was confirmed that the optimal milling condition estimated by the simulation agreed with the experiments. Therefore, it was suggested that the developed method has the potential to design the milling conditions of the wet stirred ball milling.</div></div>\",\"PeriodicalId\":7232,\"journal\":{\"name\":\"Advanced Powder Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Powder Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0921883124003650\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Powder Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921883124003650","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Development of design method for wet stirred ball milling by simulation using DEM
A design method for wet stirred ball milling by the simulation using the Discrete Element Method (DEM) was developed. The method optimized milling conditions for wet stirred ball milling by using the simulation to search for the optimal milling condition that maximizes a milling performance indicator. The milling performance indicator was defined in such a manner that the value of the indicator was maximized when more target particles with the desired particle diameter were produced in less milling time and with lower power consumption and less contamination. Furthermore, it was confirmed that the optimal milling condition estimated by the simulation agreed with the experiments. Therefore, it was suggested that the developed method has the potential to design the milling conditions of the wet stirred ball milling.
期刊介绍:
The aim of Advanced Powder Technology is to meet the demand for an international journal that integrates all aspects of science and technology research on powder and particulate materials. The journal fulfills this purpose by publishing original research papers, rapid communications, reviews, and translated articles by prominent researchers worldwide.
The editorial work of Advanced Powder Technology, which was founded as the International Journal of the Society of Powder Technology, Japan, is now shared by distinguished board members, who operate in a unique framework designed to respond to the increasing global demand for articles on not only powder and particles, but also on various materials produced from them.
Advanced Powder Technology covers various areas, but a discussion of powder and particles is required in articles. Topics include: Production of powder and particulate materials in gases and liquids(nanoparticles, fine ceramics, pharmaceuticals, novel functional materials, etc.); Aerosol and colloidal processing; Powder and particle characterization; Dynamics and phenomena; Calculation and simulation (CFD, DEM, Monte Carlo method, population balance, etc.); Measurement and control of powder processes; Particle modification; Comminution; Powder handling and operations (storage, transport, granulation, separation, fluidization, etc.)