利用 SCoT 标记对濒危药用植物十里香(Decalepis salicifolia)进行体外繁殖、SEM 分析和遗传保真度评估

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-10-23 DOI:10.1016/j.sajb.2024.10.036
Adla Wasi, Anwar Shahzad, Sabaha Tahseen
{"title":"利用 SCoT 标记对濒危药用植物十里香(Decalepis salicifolia)进行体外繁殖、SEM 分析和遗传保真度评估","authors":"Adla Wasi,&nbsp;Anwar Shahzad,&nbsp;Sabaha Tahseen","doi":"10.1016/j.sajb.2024.10.036","DOIUrl":null,"url":null,"abstract":"<div><div><em>Decalepis salicifolia</em> (Bedd. ex Hook.f.) Venter is an important medicinal plant endemic to south Western Ghats of India. The immense pharmacological properties of the plant is due to presence of number of biologically active compound especially 2‑hydroxy-4-methoxybenzaldehyde (2H4MB) which is a vanillin isomer. 2H4MB is used in the preparation of various bakery products. Due to the multiple uses of the plant, its commercial demand has increased significantly which has led to its over-exploitation. Because of over-exploitation, the natural population of <em>D. salicifolia</em> is rapidly disappearing, and is listed as critically endangered plant by IUCN. Therefore to meet the demand of the plant for commercial purposes as well as ensure the natural population is conserved, the <em>in vitro</em> propagation approach provides an efficient alternative. In the present study, maximum <em>in vitro</em> shoot proliferation was obtained by culturing the shoot tip on Murashige and Skoog's (MS) medium supplemented with a combination of 5 μM benzyladenine, 1.0 μM indole butyric acid, and 20.0 μM adenine sulphate. Microshoots were rooted effectively on half strength MS medium augmented with 2.5 μM indole-3-butyric acid. Various physiological parameters along with scanning electron microscopic analysis of leaves confirmed the successful adaptation of the plantlets to the natural environmental condition. Presence of 2H4MB <em>in vitro</em> raised plant was confirmed with the help of FTIR. SCoT marker analysis of mother and <em>in vitro</em> regenerated plant produced a high percentage of monomorphic bands hence establishing a clonal fidelity between the both. Thus <em>in vitro</em> propagation protocol developed for <em>D. salicifolia</em> can help us to reduce the exploitation pressure on the natural population of the plant and contributes in the ecorestoration, conservation, and cultivation of the plant.</div></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In vitro propagation, SEM analysis, and genetic fidelity assessment using SCoT markers in Decalepis salicifolia, an endangered medicinal plant\",\"authors\":\"Adla Wasi,&nbsp;Anwar Shahzad,&nbsp;Sabaha Tahseen\",\"doi\":\"10.1016/j.sajb.2024.10.036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div><em>Decalepis salicifolia</em> (Bedd. ex Hook.f.) Venter is an important medicinal plant endemic to south Western Ghats of India. The immense pharmacological properties of the plant is due to presence of number of biologically active compound especially 2‑hydroxy-4-methoxybenzaldehyde (2H4MB) which is a vanillin isomer. 2H4MB is used in the preparation of various bakery products. Due to the multiple uses of the plant, its commercial demand has increased significantly which has led to its over-exploitation. Because of over-exploitation, the natural population of <em>D. salicifolia</em> is rapidly disappearing, and is listed as critically endangered plant by IUCN. Therefore to meet the demand of the plant for commercial purposes as well as ensure the natural population is conserved, the <em>in vitro</em> propagation approach provides an efficient alternative. In the present study, maximum <em>in vitro</em> shoot proliferation was obtained by culturing the shoot tip on Murashige and Skoog's (MS) medium supplemented with a combination of 5 μM benzyladenine, 1.0 μM indole butyric acid, and 20.0 μM adenine sulphate. Microshoots were rooted effectively on half strength MS medium augmented with 2.5 μM indole-3-butyric acid. Various physiological parameters along with scanning electron microscopic analysis of leaves confirmed the successful adaptation of the plantlets to the natural environmental condition. Presence of 2H4MB <em>in vitro</em> raised plant was confirmed with the help of FTIR. SCoT marker analysis of mother and <em>in vitro</em> regenerated plant produced a high percentage of monomorphic bands hence establishing a clonal fidelity between the both. Thus <em>in vitro</em> propagation protocol developed for <em>D. salicifolia</em> can help us to reduce the exploitation pressure on the natural population of the plant and contributes in the ecorestoration, conservation, and cultivation of the plant.</div></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0254629924006665\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0254629924006665","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

Decalepis salicifolia (Bedd. ex Hook.f.) Venter 是印度西高止山南麓特有的一种重要药用植物。该植物具有巨大的药理作用,因为它含有多种生物活性化合物,特别是 2-羟基-4-甲氧基苯甲醛(2H4MB),这是一种香兰素异构体。2H4MB 可用于制作各种烘焙食品。由于该植物的多种用途,其商业需求大幅增加,导致过度开发。由于过度开发,D. salicifolia 的自然种群正在迅速消失,并被世界自然保护联盟列为极度濒危植物。因此,为了满足商业目的对该植物的需求,同时确保自然种群得到保护,体外繁殖方法提供了一种有效的替代方法。在本研究中,通过在添加了 5 μM 苄基腺嘌呤、1.0 μM 吲哚丁酸和 20.0 μM 硫酸腺嘌呤的 Murashige 和 Skoog(MS)培养基上培养芽尖,获得了最大的离体芽增殖。小芽在添加了 2.5 μM 吲哚-3-丁酸的半强度 MS 培养基上有效生根。各种生理参数以及叶片的扫描电子显微镜分析证实,小植株成功地适应了自然环境条件。傅立叶变换红外光谱分析证实了离体培养植株中存在 2H4MB。对母株和离体再生植株进行的 SCoT 标记分析产生了高比例的单形带,从而确定了两者之间的克隆保真度。因此,为盐肤木开发的体外繁殖方案可以帮助我们减轻对该植物自然种群的开发压力,并有助于该植物的生态恢复、保护和栽培。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
In vitro propagation, SEM analysis, and genetic fidelity assessment using SCoT markers in Decalepis salicifolia, an endangered medicinal plant
Decalepis salicifolia (Bedd. ex Hook.f.) Venter is an important medicinal plant endemic to south Western Ghats of India. The immense pharmacological properties of the plant is due to presence of number of biologically active compound especially 2‑hydroxy-4-methoxybenzaldehyde (2H4MB) which is a vanillin isomer. 2H4MB is used in the preparation of various bakery products. Due to the multiple uses of the plant, its commercial demand has increased significantly which has led to its over-exploitation. Because of over-exploitation, the natural population of D. salicifolia is rapidly disappearing, and is listed as critically endangered plant by IUCN. Therefore to meet the demand of the plant for commercial purposes as well as ensure the natural population is conserved, the in vitro propagation approach provides an efficient alternative. In the present study, maximum in vitro shoot proliferation was obtained by culturing the shoot tip on Murashige and Skoog's (MS) medium supplemented with a combination of 5 μM benzyladenine, 1.0 μM indole butyric acid, and 20.0 μM adenine sulphate. Microshoots were rooted effectively on half strength MS medium augmented with 2.5 μM indole-3-butyric acid. Various physiological parameters along with scanning electron microscopic analysis of leaves confirmed the successful adaptation of the plantlets to the natural environmental condition. Presence of 2H4MB in vitro raised plant was confirmed with the help of FTIR. SCoT marker analysis of mother and in vitro regenerated plant produced a high percentage of monomorphic bands hence establishing a clonal fidelity between the both. Thus in vitro propagation protocol developed for D. salicifolia can help us to reduce the exploitation pressure on the natural population of the plant and contributes in the ecorestoration, conservation, and cultivation of the plant.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1