利用双交叉注意和多尺度特征融合进行射频干扰识别

IF 1.9 4区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Astronomy and Computing Pub Date : 2024-10-01 DOI:10.1016/j.ascom.2024.100881
Y. Dao , B. Liang , L. Hao , S. Feng , S. Wei , W. Dai , F. Gu
{"title":"利用双交叉注意和多尺度特征融合进行射频干扰识别","authors":"Y. Dao ,&nbsp;B. Liang ,&nbsp;L. Hao ,&nbsp;S. Feng ,&nbsp;S. Wei ,&nbsp;W. Dai ,&nbsp;F. Gu","doi":"10.1016/j.ascom.2024.100881","DOIUrl":null,"url":null,"abstract":"<div><div>Radio astronomy plays a very important role in promoting scientific progress and unraveling the mysteries of the universe. However, radio telescopes are inevitably affected by radio frequency interference (RFI) when receiving radio signals, which leads to a reduction in data quality and has a serious impact on the formation of correct scientific conclusions. Therefore, it is essential to identify the RFI present in the observational data. In order to effectively identify RFI, improve the existing RFI identification methods that suffer from missed detections, and enhance the performance of RFI identification, this paper proposes a novel method that combines a dual cross-attention mechanism with multi-scale feature fusion. Experimental studies were conducted using the observational data from the 40-meter radio telescope at the Yunnan Astronomical Observatory of the Chinese Academy of Sciences. The proposed method achieved scores of 92.49%, 83.90%, and 87.99% in terms of <span><math><mrow><mi>p</mi><mi>r</mi><mi>e</mi><mi>c</mi><mi>i</mi><mi>s</mi><mi>i</mi><mi>o</mi><mi>n</mi></mrow></math></span>, <span><math><mrow><mi>r</mi><mi>e</mi><mi>c</mi><mi>a</mi><mi>l</mi><mi>l</mi></mrow></math></span>, and <span><math><msub><mrow><mi>F</mi></mrow><mrow><mn>1</mn><mo>−</mo><mi>s</mi><mi>c</mi><mi>o</mi><mi>r</mi><mi>e</mi></mrow></msub></math></span>, respectively. It outperformed existing methods (U-Net, RFI-Net, R-Net6, RFI-GAN, EMSCA-UNet) in <span><math><mrow><mi>r</mi><mi>e</mi><mi>c</mi><mi>a</mi><mi>l</mi><mi>l</mi></mrow></math></span> and <span><math><msub><mrow><mi>F</mi></mrow><mrow><mn>1</mn><mo>−</mo><mi>s</mi><mi>c</mi><mi>o</mi><mi>r</mi><mi>e</mi></mrow></msub></math></span>, effectively reducing the occurrence of missed detections and improving the overall performance of radio frequency interference identification.</div></div>","PeriodicalId":48757,"journal":{"name":"Astronomy and Computing","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Radio frequency interference identification using dual cross-attention and multi-scale feature fusing\",\"authors\":\"Y. Dao ,&nbsp;B. Liang ,&nbsp;L. Hao ,&nbsp;S. Feng ,&nbsp;S. Wei ,&nbsp;W. Dai ,&nbsp;F. Gu\",\"doi\":\"10.1016/j.ascom.2024.100881\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Radio astronomy plays a very important role in promoting scientific progress and unraveling the mysteries of the universe. However, radio telescopes are inevitably affected by radio frequency interference (RFI) when receiving radio signals, which leads to a reduction in data quality and has a serious impact on the formation of correct scientific conclusions. Therefore, it is essential to identify the RFI present in the observational data. In order to effectively identify RFI, improve the existing RFI identification methods that suffer from missed detections, and enhance the performance of RFI identification, this paper proposes a novel method that combines a dual cross-attention mechanism with multi-scale feature fusion. Experimental studies were conducted using the observational data from the 40-meter radio telescope at the Yunnan Astronomical Observatory of the Chinese Academy of Sciences. The proposed method achieved scores of 92.49%, 83.90%, and 87.99% in terms of <span><math><mrow><mi>p</mi><mi>r</mi><mi>e</mi><mi>c</mi><mi>i</mi><mi>s</mi><mi>i</mi><mi>o</mi><mi>n</mi></mrow></math></span>, <span><math><mrow><mi>r</mi><mi>e</mi><mi>c</mi><mi>a</mi><mi>l</mi><mi>l</mi></mrow></math></span>, and <span><math><msub><mrow><mi>F</mi></mrow><mrow><mn>1</mn><mo>−</mo><mi>s</mi><mi>c</mi><mi>o</mi><mi>r</mi><mi>e</mi></mrow></msub></math></span>, respectively. It outperformed existing methods (U-Net, RFI-Net, R-Net6, RFI-GAN, EMSCA-UNet) in <span><math><mrow><mi>r</mi><mi>e</mi><mi>c</mi><mi>a</mi><mi>l</mi><mi>l</mi></mrow></math></span> and <span><math><msub><mrow><mi>F</mi></mrow><mrow><mn>1</mn><mo>−</mo><mi>s</mi><mi>c</mi><mi>o</mi><mi>r</mi><mi>e</mi></mrow></msub></math></span>, effectively reducing the occurrence of missed detections and improving the overall performance of radio frequency interference identification.</div></div>\",\"PeriodicalId\":48757,\"journal\":{\"name\":\"Astronomy and Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Astronomy and Computing\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2213133724000969\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astronomy and Computing","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213133724000969","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

射电天文学在促进科学进步和揭开宇宙奥秘方面发挥着非常重要的作用。然而,射电望远镜在接收无线电信号时不可避免地会受到射频干扰(RFI)的影响,导致数据质量下降,严重影响正确科学结论的形成。因此,识别观测数据中存在的射频干扰至关重要。为了有效识别射频干扰,改进现有存在漏检问题的射频干扰识别方法,提高射频干扰识别的性能,本文提出了一种将双交叉注意机制与多尺度特征融合相结合的新方法。利用中国科学院云南天文台 40 米射电望远镜的观测数据进行了实验研究。所提出的方法在精确度、召回率和 F1 分数方面分别达到了 92.49%、83.90% 和 87.99%。该方法在召回率和 F1 分数方面优于现有方法(U-Net、RFI-Net、R-Net6、RFI-GAN、EMSCA-UNet),有效减少了漏检的发生,提高了射频干扰识别的整体性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Radio frequency interference identification using dual cross-attention and multi-scale feature fusing
Radio astronomy plays a very important role in promoting scientific progress and unraveling the mysteries of the universe. However, radio telescopes are inevitably affected by radio frequency interference (RFI) when receiving radio signals, which leads to a reduction in data quality and has a serious impact on the formation of correct scientific conclusions. Therefore, it is essential to identify the RFI present in the observational data. In order to effectively identify RFI, improve the existing RFI identification methods that suffer from missed detections, and enhance the performance of RFI identification, this paper proposes a novel method that combines a dual cross-attention mechanism with multi-scale feature fusion. Experimental studies were conducted using the observational data from the 40-meter radio telescope at the Yunnan Astronomical Observatory of the Chinese Academy of Sciences. The proposed method achieved scores of 92.49%, 83.90%, and 87.99% in terms of precision, recall, and F1score, respectively. It outperformed existing methods (U-Net, RFI-Net, R-Net6, RFI-GAN, EMSCA-UNet) in recall and F1score, effectively reducing the occurrence of missed detections and improving the overall performance of radio frequency interference identification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Astronomy and Computing
Astronomy and Computing ASTRONOMY & ASTROPHYSICSCOMPUTER SCIENCE,-COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
CiteScore
4.10
自引率
8.00%
发文量
67
期刊介绍: Astronomy and Computing is a peer-reviewed journal that focuses on the broad area between astronomy, computer science and information technology. The journal aims to publish the work of scientists and (software) engineers in all aspects of astronomical computing, including the collection, analysis, reduction, visualisation, preservation and dissemination of data, and the development of astronomical software and simulations. The journal covers applications for academic computer science techniques to astronomy, as well as novel applications of information technologies within astronomy.
期刊最新文献
Photometric redshifts probability density estimation from recurrent neural networks in the DECam local volume exploration survey data release 2 Computation of bulk viscous pressure with observational constraints via scalar field in the General relativity and f(Q) gravity Temporal variation of atmospheric electric field in comparison with solar terrestrial activities during the 24th solar cycle Classifying the clouds of Venus using unsupervised machine learning Radio frequency interference identification using dual cross-attention and multi-scale feature fusing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1