{"title":"利用同时发射和反射的可重构智能表面,对半城市环境进行基于几何的随机信道建模","authors":"Rashmi H, Ashvini Chaturvedi, John D’Souza","doi":"10.1016/j.phycom.2024.102527","DOIUrl":null,"url":null,"abstract":"<div><div>Simultaneously Transmitting and Reflecting (STAR) Reconfigurable Intelligent Surface (RIS) demonstrates the ability to split incoming electromagnetic beams to transmit and reflect signals in a concurrent manner. Thus, compared to conventional RIS, service area coverage is extended on deploying STAR-RIS. This paper presents a geometry-based stochastic channel model (GBSM) of STAR-RIS-assisted outdoor wireless channel. For the considered semi-urban environment, STAR-RIS operates in energy-splitting mode. Channel between a base station (BS) and users <span><math><mrow><mo>(</mo><msub><mrow><mtext>U</mtext></mrow><mrow><mtext>R</mtext></mrow></msub><mo>/</mo><msub><mrow><mtext>U</mtext></mrow><mrow><mtext>T</mtext></mrow></msub><mo>)</mo></mrow></math></span> located on the reflect/transmit (R/T) side of STAR-RIS is characterised using a GBSM. An elliptical model incorporates the inevitable presence of scatterers in the considered semi-urban segment. Statistical properties of the wireless channel under test are analysed using space–time cross-correlation function (ST-CCF) and temporal auto-correlation function (ACF). Further, to gain holistic insight about the wireless channel behaviour, normalised Doppler power spectral density (ND-PSD) is estimated for semi-urban segment having three distinct underlying hypothesis as: (i) Wireless channel is governed by Rayleigh fading model, (ii) Wireless Channel is equipped with conventional RIS and (iii) STAR-RIS is an integral part of the considered wireless channel. Simulation results confirm that STAR-RIS performs at par with RIS, however, facilitating an additional degree of coverage. It is observed that temporal ACF and ST-CCF improves with an increase in the number of elements in STAR-RIS.</div></div>","PeriodicalId":48707,"journal":{"name":"Physical Communication","volume":"67 ","pages":"Article 102527"},"PeriodicalIF":2.0000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Geometry-based stochastic channel modeling of a semi-urban environment using simultaneously transmitting and reflecting reconfigurable intelligentsurface\",\"authors\":\"Rashmi H, Ashvini Chaturvedi, John D’Souza\",\"doi\":\"10.1016/j.phycom.2024.102527\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Simultaneously Transmitting and Reflecting (STAR) Reconfigurable Intelligent Surface (RIS) demonstrates the ability to split incoming electromagnetic beams to transmit and reflect signals in a concurrent manner. Thus, compared to conventional RIS, service area coverage is extended on deploying STAR-RIS. This paper presents a geometry-based stochastic channel model (GBSM) of STAR-RIS-assisted outdoor wireless channel. For the considered semi-urban environment, STAR-RIS operates in energy-splitting mode. Channel between a base station (BS) and users <span><math><mrow><mo>(</mo><msub><mrow><mtext>U</mtext></mrow><mrow><mtext>R</mtext></mrow></msub><mo>/</mo><msub><mrow><mtext>U</mtext></mrow><mrow><mtext>T</mtext></mrow></msub><mo>)</mo></mrow></math></span> located on the reflect/transmit (R/T) side of STAR-RIS is characterised using a GBSM. An elliptical model incorporates the inevitable presence of scatterers in the considered semi-urban segment. Statistical properties of the wireless channel under test are analysed using space–time cross-correlation function (ST-CCF) and temporal auto-correlation function (ACF). Further, to gain holistic insight about the wireless channel behaviour, normalised Doppler power spectral density (ND-PSD) is estimated for semi-urban segment having three distinct underlying hypothesis as: (i) Wireless channel is governed by Rayleigh fading model, (ii) Wireless Channel is equipped with conventional RIS and (iii) STAR-RIS is an integral part of the considered wireless channel. Simulation results confirm that STAR-RIS performs at par with RIS, however, facilitating an additional degree of coverage. It is observed that temporal ACF and ST-CCF improves with an increase in the number of elements in STAR-RIS.</div></div>\",\"PeriodicalId\":48707,\"journal\":{\"name\":\"Physical Communication\",\"volume\":\"67 \",\"pages\":\"Article 102527\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Communication\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1874490724002453\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Communication","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1874490724002453","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Geometry-based stochastic channel modeling of a semi-urban environment using simultaneously transmitting and reflecting reconfigurable intelligentsurface
Simultaneously Transmitting and Reflecting (STAR) Reconfigurable Intelligent Surface (RIS) demonstrates the ability to split incoming electromagnetic beams to transmit and reflect signals in a concurrent manner. Thus, compared to conventional RIS, service area coverage is extended on deploying STAR-RIS. This paper presents a geometry-based stochastic channel model (GBSM) of STAR-RIS-assisted outdoor wireless channel. For the considered semi-urban environment, STAR-RIS operates in energy-splitting mode. Channel between a base station (BS) and users located on the reflect/transmit (R/T) side of STAR-RIS is characterised using a GBSM. An elliptical model incorporates the inevitable presence of scatterers in the considered semi-urban segment. Statistical properties of the wireless channel under test are analysed using space–time cross-correlation function (ST-CCF) and temporal auto-correlation function (ACF). Further, to gain holistic insight about the wireless channel behaviour, normalised Doppler power spectral density (ND-PSD) is estimated for semi-urban segment having three distinct underlying hypothesis as: (i) Wireless channel is governed by Rayleigh fading model, (ii) Wireless Channel is equipped with conventional RIS and (iii) STAR-RIS is an integral part of the considered wireless channel. Simulation results confirm that STAR-RIS performs at par with RIS, however, facilitating an additional degree of coverage. It is observed that temporal ACF and ST-CCF improves with an increase in the number of elements in STAR-RIS.
期刊介绍:
PHYCOM: Physical Communication is an international and archival journal providing complete coverage of all topics of interest to those involved in all aspects of physical layer communications. Theoretical research contributions presenting new techniques, concepts or analyses, applied contributions reporting on experiences and experiments, and tutorials are published.
Topics of interest include but are not limited to:
Physical layer issues of Wireless Local Area Networks, WiMAX, Wireless Mesh Networks, Sensor and Ad Hoc Networks, PCS Systems; Radio access protocols and algorithms for the physical layer; Spread Spectrum Communications; Channel Modeling; Detection and Estimation; Modulation and Coding; Multiplexing and Carrier Techniques; Broadband Wireless Communications; Wireless Personal Communications; Multi-user Detection; Signal Separation and Interference rejection: Multimedia Communications over Wireless; DSP Applications to Wireless Systems; Experimental and Prototype Results; Multiple Access Techniques; Space-time Processing; Synchronization Techniques; Error Control Techniques; Cryptography; Software Radios; Tracking; Resource Allocation and Inference Management; Multi-rate and Multi-carrier Communications; Cross layer Design and Optimization; Propagation and Channel Characterization; OFDM Systems; MIMO Systems; Ultra-Wideband Communications; Cognitive Radio System Architectures; Platforms and Hardware Implementations for the Support of Cognitive, Radio Systems; Cognitive Radio Resource Management and Dynamic Spectrum Sharing.