Philippe Hergibo , Timothy N. Phillips , Zhihua Xie
{"title":"利用丝状流体力矩法解析多相流的亚网格尺度结构","authors":"Philippe Hergibo , Timothy N. Phillips , Zhihua Xie","doi":"10.1016/j.compfluid.2024.106455","DOIUrl":null,"url":null,"abstract":"<div><div>Multiphase flows are present in many industrial and engineering applications as well as in some physical phenomena. Capturing the interface between the phases for complex flows is challenging and requires an accurate method, especially to resolve fine-scale structures. The moment-of-fluid (MOF) method improves drastically the accuracy of interface reconstruction compared to previous geometrical methods. Instead of refining the mesh to capture increased levels of detail, the MOF method, which uses zeroth and first moments as well as a conglomeration algorithm, enables subgrid structures such as filaments to be captured at a small extra cost. Coupled to a finite volume Navier–Stokes solver, the MOF method has been tested on a fixed grid and validated using well-known benchmark problems such as dam break flows, the Rayleigh–Taylor and Kelvin–Helmholtz instability problems, and a rising bubble. The ability of the novel filament MOF method to capture the filamentary structures that eventually form for the Rayleigh–Taylor instability and rising bubble problems is assessed. Good agreement has been found with other numerical results and experimental measurements available in the literature.</div></div>","PeriodicalId":287,"journal":{"name":"Computers & Fluids","volume":"285 ","pages":"Article 106455"},"PeriodicalIF":2.5000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Resolving subgrid-scale structures for multiphase flows using a filament moment-of-fluid method\",\"authors\":\"Philippe Hergibo , Timothy N. Phillips , Zhihua Xie\",\"doi\":\"10.1016/j.compfluid.2024.106455\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Multiphase flows are present in many industrial and engineering applications as well as in some physical phenomena. Capturing the interface between the phases for complex flows is challenging and requires an accurate method, especially to resolve fine-scale structures. The moment-of-fluid (MOF) method improves drastically the accuracy of interface reconstruction compared to previous geometrical methods. Instead of refining the mesh to capture increased levels of detail, the MOF method, which uses zeroth and first moments as well as a conglomeration algorithm, enables subgrid structures such as filaments to be captured at a small extra cost. Coupled to a finite volume Navier–Stokes solver, the MOF method has been tested on a fixed grid and validated using well-known benchmark problems such as dam break flows, the Rayleigh–Taylor and Kelvin–Helmholtz instability problems, and a rising bubble. The ability of the novel filament MOF method to capture the filamentary structures that eventually form for the Rayleigh–Taylor instability and rising bubble problems is assessed. Good agreement has been found with other numerical results and experimental measurements available in the literature.</div></div>\",\"PeriodicalId\":287,\"journal\":{\"name\":\"Computers & Fluids\",\"volume\":\"285 \",\"pages\":\"Article 106455\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Fluids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S004579302400286X\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Fluids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S004579302400286X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Resolving subgrid-scale structures for multiphase flows using a filament moment-of-fluid method
Multiphase flows are present in many industrial and engineering applications as well as in some physical phenomena. Capturing the interface between the phases for complex flows is challenging and requires an accurate method, especially to resolve fine-scale structures. The moment-of-fluid (MOF) method improves drastically the accuracy of interface reconstruction compared to previous geometrical methods. Instead of refining the mesh to capture increased levels of detail, the MOF method, which uses zeroth and first moments as well as a conglomeration algorithm, enables subgrid structures such as filaments to be captured at a small extra cost. Coupled to a finite volume Navier–Stokes solver, the MOF method has been tested on a fixed grid and validated using well-known benchmark problems such as dam break flows, the Rayleigh–Taylor and Kelvin–Helmholtz instability problems, and a rising bubble. The ability of the novel filament MOF method to capture the filamentary structures that eventually form for the Rayleigh–Taylor instability and rising bubble problems is assessed. Good agreement has been found with other numerical results and experimental measurements available in the literature.
期刊介绍:
Computers & Fluids is multidisciplinary. The term ''fluid'' is interpreted in the broadest sense. Hydro- and aerodynamics, high-speed and physical gas dynamics, turbulence and flow stability, multiphase flow, rheology, tribology and fluid-structure interaction are all of interest, provided that computer technique plays a significant role in the associated studies or design methodology.