根据沿海塔在三次登陆台风期间的测量结果得出的阵风系数随风向和高度的变化情况

IF 2.4 4区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES Tropical Cyclone Research and Review Pub Date : 2024-09-01 DOI:10.1016/j.tcrr.2024.08.005
Pingzhi Fang , Tao Huo , Junjun Pan , Guihan Luan
{"title":"根据沿海塔在三次登陆台风期间的测量结果得出的阵风系数随风向和高度的变化情况","authors":"Pingzhi Fang ,&nbsp;Tao Huo ,&nbsp;Junjun Pan ,&nbsp;Guihan Luan","doi":"10.1016/j.tcrr.2024.08.005","DOIUrl":null,"url":null,"abstract":"<div><div>Using high-frequency onshore wind data from four different heights of a coastal tower, the variations in gust factor with turbulence intensity, height and wind speed were studied under typhoon conditions. The gust factor increases with increasing turbulence intensity and, most often, can be described by a linear relationship with the turbulence intensity. The gust factor decreases with height and is relatively small compared with those presented in the national codes and other studies. A value of 2.5 is acceptable for the peak factor, which is close to the recommended value of the national code in China. The gust factor increases with increasing wind speed and is also affected by the wind direction. The gust factor has a value to that of previously published results when the wind flows roughly perpendicular to the shoreline, and has a smaller value when the wind flows roughly parallel to the shoreline. The phenomenon is caused by the confinement of shoreline on the sea wave development. Sea waves tend to propagate normal to the shoreline because of the refraction effect. As a result, a shorter roughness length exists in the parallel direction to the shoreline. It can be further explained by the weakness in the momentum flux exchange between the air and sea based on the wave form drag theory when the wind flows parallel to the shoreline.</div></div>","PeriodicalId":44442,"journal":{"name":"Tropical Cyclone Research and Review","volume":"13 3","pages":"Pages 187-195"},"PeriodicalIF":2.4000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Variations in gust factor with wind direction and height based on the measurements from a coastal tower during three landfalling typhoons\",\"authors\":\"Pingzhi Fang ,&nbsp;Tao Huo ,&nbsp;Junjun Pan ,&nbsp;Guihan Luan\",\"doi\":\"10.1016/j.tcrr.2024.08.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Using high-frequency onshore wind data from four different heights of a coastal tower, the variations in gust factor with turbulence intensity, height and wind speed were studied under typhoon conditions. The gust factor increases with increasing turbulence intensity and, most often, can be described by a linear relationship with the turbulence intensity. The gust factor decreases with height and is relatively small compared with those presented in the national codes and other studies. A value of 2.5 is acceptable for the peak factor, which is close to the recommended value of the national code in China. The gust factor increases with increasing wind speed and is also affected by the wind direction. The gust factor has a value to that of previously published results when the wind flows roughly perpendicular to the shoreline, and has a smaller value when the wind flows roughly parallel to the shoreline. The phenomenon is caused by the confinement of shoreline on the sea wave development. Sea waves tend to propagate normal to the shoreline because of the refraction effect. As a result, a shorter roughness length exists in the parallel direction to the shoreline. It can be further explained by the weakness in the momentum flux exchange between the air and sea based on the wave form drag theory when the wind flows parallel to the shoreline.</div></div>\",\"PeriodicalId\":44442,\"journal\":{\"name\":\"Tropical Cyclone Research and Review\",\"volume\":\"13 3\",\"pages\":\"Pages 187-195\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tropical Cyclone Research and Review\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2225603224000432\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tropical Cyclone Research and Review","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2225603224000432","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

利用沿海高塔四个不同高度的高频陆上风数据,研究了台风条件下阵风因子随湍流强度、高度和风速的变化。阵风因子随湍流强度的增加而增加,通常与湍流强度呈线性关系。阵风系数随高度的增加而减小,与国家规范和其他研究中提出的阵风系数相比相对较小。峰值系数取 2.5 是可以接受的,与中国国家规范的推荐值接近。阵风系数随风速的增加而增加,同时也受风向的影响。当风向大致垂直于海岸线时,阵风系数的值与之前公布的结果相同,而当风向大致平行于海岸线时,阵风系数的值较小。这种现象是由海岸线对海浪发展的限制造成的。由于折射效应,海波倾向于向海岸线的法线方向传播。因此,与海岸线平行方向的粗糙度长度较短。根据波形阻力理论,当风向与海岸线平行时,海气之间的动量通量交换较弱,这可以进一步解释这一现象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Variations in gust factor with wind direction and height based on the measurements from a coastal tower during three landfalling typhoons
Using high-frequency onshore wind data from four different heights of a coastal tower, the variations in gust factor with turbulence intensity, height and wind speed were studied under typhoon conditions. The gust factor increases with increasing turbulence intensity and, most often, can be described by a linear relationship with the turbulence intensity. The gust factor decreases with height and is relatively small compared with those presented in the national codes and other studies. A value of 2.5 is acceptable for the peak factor, which is close to the recommended value of the national code in China. The gust factor increases with increasing wind speed and is also affected by the wind direction. The gust factor has a value to that of previously published results when the wind flows roughly perpendicular to the shoreline, and has a smaller value when the wind flows roughly parallel to the shoreline. The phenomenon is caused by the confinement of shoreline on the sea wave development. Sea waves tend to propagate normal to the shoreline because of the refraction effect. As a result, a shorter roughness length exists in the parallel direction to the shoreline. It can be further explained by the weakness in the momentum flux exchange between the air and sea based on the wave form drag theory when the wind flows parallel to the shoreline.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Tropical Cyclone Research and Review
Tropical Cyclone Research and Review METEOROLOGY & ATMOSPHERIC SCIENCES-
CiteScore
4.60
自引率
3.40%
发文量
184
审稿时长
30 weeks
期刊介绍: Tropical Cyclone Research and Review is an international journal focusing on tropical cyclone monitoring, forecasting, and research as well as associated hydrological effects and disaster risk reduction. This journal is edited and published by the ESCAP/WMO Typhoon Committee (TC) and the Shanghai Typhoon Institute of the China Meteorology Administration (STI/CMA). Contributions from all tropical cyclone basins are welcome. Scope of the journal includes: • Reviews of tropical cyclones exhibiting unusual characteristics or behavior or resulting in disastrous impacts on Typhoon Committee Members and other regional WMO bodies • Advances in applied and basic tropical cyclone research or technology to improve tropical cyclone forecasts and warnings • Basic theoretical studies of tropical cyclones • Event reports, compelling images, and topic review reports of tropical cyclones • Impacts, risk assessments, and risk management techniques related to tropical cyclones
期刊最新文献
Discussion on the enhancement of Typhoon Committee activities for UN EW4All initiative Analyzing coherent structures in the tropical cyclone boundary layer using large eddy simulations Analysis of characteristics and evaluation of forecast accuracy for Super Typhoon Doksuri (2023) Case study of high waves in the South Pacific generated by Tropical Cyclone Harold in 2020 A theoretical method to characterize the resistance effects of nonflat terrain on wind fields in a parametric wind field model for tropical cyclones
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1