Shengnan Ouyang , Maomao Zhai , Zhongyuan Wen , Shouwei Zhang , Kunkun Zhu , Jinfeng Wang , Jinming Zhang , Qingtao Liu , Xungai Wang
{"title":"丝基聚电解质蒸发器具有优异的耐盐性,可用于高速稳定的太阳能海水淡化","authors":"Shengnan Ouyang , Maomao Zhai , Zhongyuan Wen , Shouwei Zhang , Kunkun Zhu , Jinfeng Wang , Jinming Zhang , Qingtao Liu , Xungai Wang","doi":"10.1016/j.desal.2024.118234","DOIUrl":null,"url":null,"abstract":"<div><div>Solar-driven interfacial evaporation technology is a promising solution to solve global freshwater shortages through desalination. However, salt accumulation in the evaporator affects light absorption and reduces evaporation efficiency, thereby significantly reducing the service life and operating efficiency of the evaporator. Herein, we propose a strategy for sustainable salt resistance that enables strong salt resistance and rapid water delivery by in situ polymerization of sodium acrylate (PAAS) on the directional channel. As a result, the as-prepared SF/rGO@PAAS can achieve a high evaporation rate of up to 2.31 kg m<sup>−2</sup> h<sup>−1</sup> and high evaporation efficiency of up to 98% under one sun, benefiting from the inherent hydrophilicity of silk fibroin (SF), the directional channel design of water transport layer, and the efficient solar light absorption in full spectrum of reduced graphene oxide (rGO). More importantly, due to the electrostatic effect of PAAS, the evaporator showed excellent salt resistance, with no salt precipitation for 5 days of continuous evaporation in simulated seawater (3.5 wt%) while maintaining the high evaporation rate. This salt resistant evaporator provides an effective solution to the salt accumulation and addresses a key challenge in sustainable desalination.</div></div>","PeriodicalId":299,"journal":{"name":"Desalination","volume":"593 ","pages":"Article 118234"},"PeriodicalIF":8.3000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Silk-based polyelectrolyte evaporator with excellent salt resistance for high-rate and stable solar desalination\",\"authors\":\"Shengnan Ouyang , Maomao Zhai , Zhongyuan Wen , Shouwei Zhang , Kunkun Zhu , Jinfeng Wang , Jinming Zhang , Qingtao Liu , Xungai Wang\",\"doi\":\"10.1016/j.desal.2024.118234\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Solar-driven interfacial evaporation technology is a promising solution to solve global freshwater shortages through desalination. However, salt accumulation in the evaporator affects light absorption and reduces evaporation efficiency, thereby significantly reducing the service life and operating efficiency of the evaporator. Herein, we propose a strategy for sustainable salt resistance that enables strong salt resistance and rapid water delivery by in situ polymerization of sodium acrylate (PAAS) on the directional channel. As a result, the as-prepared SF/rGO@PAAS can achieve a high evaporation rate of up to 2.31 kg m<sup>−2</sup> h<sup>−1</sup> and high evaporation efficiency of up to 98% under one sun, benefiting from the inherent hydrophilicity of silk fibroin (SF), the directional channel design of water transport layer, and the efficient solar light absorption in full spectrum of reduced graphene oxide (rGO). More importantly, due to the electrostatic effect of PAAS, the evaporator showed excellent salt resistance, with no salt precipitation for 5 days of continuous evaporation in simulated seawater (3.5 wt%) while maintaining the high evaporation rate. This salt resistant evaporator provides an effective solution to the salt accumulation and addresses a key challenge in sustainable desalination.</div></div>\",\"PeriodicalId\":299,\"journal\":{\"name\":\"Desalination\",\"volume\":\"593 \",\"pages\":\"Article 118234\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Desalination\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0011916424009457\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Desalination","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0011916424009457","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Silk-based polyelectrolyte evaporator with excellent salt resistance for high-rate and stable solar desalination
Solar-driven interfacial evaporation technology is a promising solution to solve global freshwater shortages through desalination. However, salt accumulation in the evaporator affects light absorption and reduces evaporation efficiency, thereby significantly reducing the service life and operating efficiency of the evaporator. Herein, we propose a strategy for sustainable salt resistance that enables strong salt resistance and rapid water delivery by in situ polymerization of sodium acrylate (PAAS) on the directional channel. As a result, the as-prepared SF/rGO@PAAS can achieve a high evaporation rate of up to 2.31 kg m−2 h−1 and high evaporation efficiency of up to 98% under one sun, benefiting from the inherent hydrophilicity of silk fibroin (SF), the directional channel design of water transport layer, and the efficient solar light absorption in full spectrum of reduced graphene oxide (rGO). More importantly, due to the electrostatic effect of PAAS, the evaporator showed excellent salt resistance, with no salt precipitation for 5 days of continuous evaporation in simulated seawater (3.5 wt%) while maintaining the high evaporation rate. This salt resistant evaporator provides an effective solution to the salt accumulation and addresses a key challenge in sustainable desalination.
期刊介绍:
Desalination is a scholarly journal that focuses on the field of desalination materials, processes, and associated technologies. It encompasses a wide range of disciplines and aims to publish exceptional papers in this area.
The journal invites submissions that explicitly revolve around water desalting and its applications to various sources such as seawater, groundwater, and wastewater. It particularly encourages research on diverse desalination methods including thermal, membrane, sorption, and hybrid processes.
By providing a platform for innovative studies, Desalination aims to advance the understanding and development of desalination technologies, promoting sustainable solutions for water scarcity challenges.