{"title":"在线核切片反回归","authors":"Jianjun Xu , Yue Zhao , Haoyang Cheng","doi":"10.1016/j.csda.2024.108071","DOIUrl":null,"url":null,"abstract":"<div><div>Online dimension reduction techniques are widely utilized for handling high-dimensional streaming data. Extensive research has been conducted on various methods, including Online Principal Component Analysis, Online Sliced Inverse Regression (OSIR), and Online Kernel Principal Component Analysis (OKPCA). However, it is important to note that the exploration of online supervised nonlinear dimension reduction techniques is still limited. This article presents a novel approach called Online Kernel Sliced Inverse Regression (OKSIR), which specifically tackles the challenge of dealing with the increasing dimension of the kernel matrix as the sample size grows. The proposed method incorporates two key components: the approximate linear dependence condition and dictionary variable sets. These components enable a reduced-order approach for online variable updates, improving the efficiency of the process. To solve the OKSIR problem, we formulate it as an online generalized eigen-decomposition problem and employ stochastic optimization techniques to update the dimension reduction directions. Theoretical properties of this online learner are established, providing a solid foundation for its application. Through extensive simulations and real data analysis, we demonstrate that the proposed OKSIR method achieves performance comparable to that of batch processing kernel sliced inverse regression. This research significantly contributes to the advancement of online dimension reduction techniques, enhancing their effectiveness in practical applications.</div></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Online kernel sliced inverse regression\",\"authors\":\"Jianjun Xu , Yue Zhao , Haoyang Cheng\",\"doi\":\"10.1016/j.csda.2024.108071\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Online dimension reduction techniques are widely utilized for handling high-dimensional streaming data. Extensive research has been conducted on various methods, including Online Principal Component Analysis, Online Sliced Inverse Regression (OSIR), and Online Kernel Principal Component Analysis (OKPCA). However, it is important to note that the exploration of online supervised nonlinear dimension reduction techniques is still limited. This article presents a novel approach called Online Kernel Sliced Inverse Regression (OKSIR), which specifically tackles the challenge of dealing with the increasing dimension of the kernel matrix as the sample size grows. The proposed method incorporates two key components: the approximate linear dependence condition and dictionary variable sets. These components enable a reduced-order approach for online variable updates, improving the efficiency of the process. To solve the OKSIR problem, we formulate it as an online generalized eigen-decomposition problem and employ stochastic optimization techniques to update the dimension reduction directions. Theoretical properties of this online learner are established, providing a solid foundation for its application. Through extensive simulations and real data analysis, we demonstrate that the proposed OKSIR method achieves performance comparable to that of batch processing kernel sliced inverse regression. This research significantly contributes to the advancement of online dimension reduction techniques, enhancing their effectiveness in practical applications.</div></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167947324001555\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167947324001555","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Online dimension reduction techniques are widely utilized for handling high-dimensional streaming data. Extensive research has been conducted on various methods, including Online Principal Component Analysis, Online Sliced Inverse Regression (OSIR), and Online Kernel Principal Component Analysis (OKPCA). However, it is important to note that the exploration of online supervised nonlinear dimension reduction techniques is still limited. This article presents a novel approach called Online Kernel Sliced Inverse Regression (OKSIR), which specifically tackles the challenge of dealing with the increasing dimension of the kernel matrix as the sample size grows. The proposed method incorporates two key components: the approximate linear dependence condition and dictionary variable sets. These components enable a reduced-order approach for online variable updates, improving the efficiency of the process. To solve the OKSIR problem, we formulate it as an online generalized eigen-decomposition problem and employ stochastic optimization techniques to update the dimension reduction directions. Theoretical properties of this online learner are established, providing a solid foundation for its application. Through extensive simulations and real data analysis, we demonstrate that the proposed OKSIR method achieves performance comparable to that of batch processing kernel sliced inverse regression. This research significantly contributes to the advancement of online dimension reduction techniques, enhancing their effectiveness in practical applications.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.