在线核切片反回归

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2024-10-16 DOI:10.1016/j.csda.2024.108071
Jianjun Xu , Yue Zhao , Haoyang Cheng
{"title":"在线核切片反回归","authors":"Jianjun Xu ,&nbsp;Yue Zhao ,&nbsp;Haoyang Cheng","doi":"10.1016/j.csda.2024.108071","DOIUrl":null,"url":null,"abstract":"<div><div>Online dimension reduction techniques are widely utilized for handling high-dimensional streaming data. Extensive research has been conducted on various methods, including Online Principal Component Analysis, Online Sliced Inverse Regression (OSIR), and Online Kernel Principal Component Analysis (OKPCA). However, it is important to note that the exploration of online supervised nonlinear dimension reduction techniques is still limited. This article presents a novel approach called Online Kernel Sliced Inverse Regression (OKSIR), which specifically tackles the challenge of dealing with the increasing dimension of the kernel matrix as the sample size grows. The proposed method incorporates two key components: the approximate linear dependence condition and dictionary variable sets. These components enable a reduced-order approach for online variable updates, improving the efficiency of the process. To solve the OKSIR problem, we formulate it as an online generalized eigen-decomposition problem and employ stochastic optimization techniques to update the dimension reduction directions. Theoretical properties of this online learner are established, providing a solid foundation for its application. Through extensive simulations and real data analysis, we demonstrate that the proposed OKSIR method achieves performance comparable to that of batch processing kernel sliced inverse regression. This research significantly contributes to the advancement of online dimension reduction techniques, enhancing their effectiveness in practical applications.</div></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Online kernel sliced inverse regression\",\"authors\":\"Jianjun Xu ,&nbsp;Yue Zhao ,&nbsp;Haoyang Cheng\",\"doi\":\"10.1016/j.csda.2024.108071\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Online dimension reduction techniques are widely utilized for handling high-dimensional streaming data. Extensive research has been conducted on various methods, including Online Principal Component Analysis, Online Sliced Inverse Regression (OSIR), and Online Kernel Principal Component Analysis (OKPCA). However, it is important to note that the exploration of online supervised nonlinear dimension reduction techniques is still limited. This article presents a novel approach called Online Kernel Sliced Inverse Regression (OKSIR), which specifically tackles the challenge of dealing with the increasing dimension of the kernel matrix as the sample size grows. The proposed method incorporates two key components: the approximate linear dependence condition and dictionary variable sets. These components enable a reduced-order approach for online variable updates, improving the efficiency of the process. To solve the OKSIR problem, we formulate it as an online generalized eigen-decomposition problem and employ stochastic optimization techniques to update the dimension reduction directions. Theoretical properties of this online learner are established, providing a solid foundation for its application. Through extensive simulations and real data analysis, we demonstrate that the proposed OKSIR method achieves performance comparable to that of batch processing kernel sliced inverse regression. This research significantly contributes to the advancement of online dimension reduction techniques, enhancing their effectiveness in practical applications.</div></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167947324001555\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167947324001555","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在线降维技术被广泛用于处理高维流数据。人们对各种方法进行了广泛的研究,包括在线主成分分析、在线切片反回归(OSIR)和在线核主成分分析(OKPCA)。然而,值得注意的是,对在线监督非线性降维技术的探索仍然有限。本文提出了一种名为 "在线内核切片反回归"(Online Kernel Sliced Inverse Regression,OKSIR)的新方法,专门解决随着样本量的增加,内核矩阵维度不断增加的难题。所提出的方法包含两个关键部分:近似线性依赖条件和字典变量集。这两个部分使得在线变量更新的阶次降低,从而提高了整个过程的效率。为了解决 OKSIR 问题,我们将其表述为一个在线广义特征分解问题,并采用随机优化技术来更新降维方向。我们建立了这种在线学习器的理论特性,为其应用奠定了坚实的基础。通过大量的仿真和实际数据分析,我们证明了所提出的 OKSIR 方法的性能可与批处理核切片反回归方法相媲美。这项研究极大地推动了在线降维技术的发展,提高了其在实际应用中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Online kernel sliced inverse regression
Online dimension reduction techniques are widely utilized for handling high-dimensional streaming data. Extensive research has been conducted on various methods, including Online Principal Component Analysis, Online Sliced Inverse Regression (OSIR), and Online Kernel Principal Component Analysis (OKPCA). However, it is important to note that the exploration of online supervised nonlinear dimension reduction techniques is still limited. This article presents a novel approach called Online Kernel Sliced Inverse Regression (OKSIR), which specifically tackles the challenge of dealing with the increasing dimension of the kernel matrix as the sample size grows. The proposed method incorporates two key components: the approximate linear dependence condition and dictionary variable sets. These components enable a reduced-order approach for online variable updates, improving the efficiency of the process. To solve the OKSIR problem, we formulate it as an online generalized eigen-decomposition problem and employ stochastic optimization techniques to update the dimension reduction directions. Theoretical properties of this online learner are established, providing a solid foundation for its application. Through extensive simulations and real data analysis, we demonstrate that the proposed OKSIR method achieves performance comparable to that of batch processing kernel sliced inverse regression. This research significantly contributes to the advancement of online dimension reduction techniques, enhancing their effectiveness in practical applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1