Guangqiang Li , Ruolin Zhang , Keyu Chen , Jiawen Dong , Zhihao Yang , Hangyu Chen , Haipeng Wang , Hui Wang , Huali Lei , Wendai Bao , Min Zhang , Zhidong Xiao , Liang Cheng , Zhiqiang Dong
{"title":"硫化锌纳米颗粒可作为气体缓释生物反应器,用于缺血性中风的 H2S 治疗","authors":"Guangqiang Li , Ruolin Zhang , Keyu Chen , Jiawen Dong , Zhihao Yang , Hangyu Chen , Haipeng Wang , Hui Wang , Huali Lei , Wendai Bao , Min Zhang , Zhidong Xiao , Liang Cheng , Zhiqiang Dong","doi":"10.1016/j.biomaterials.2024.122912","DOIUrl":null,"url":null,"abstract":"<div><div>Stroke is one of the leading causes of death and disability in the world. Ischemic stroke causes overproduction of reactive oxygen/nitrogen species (RONS) after reperfusion, triggering inflammatory responses that further leads to cell damage. In order to develop novel neuroprotective materials, we synthesized zinc sulfide nanoparticles (ZnS NPs) to function as gas slow-release bioreactors, showcasing stable and sustained H<sub>2</sub>S release while effectively removing RONS. In cultured cells, ZnS NPs can reduce the oxidative damage caused by oxygen-glucose deprivation and reoxygenation (OGD/R), promote the expression of p-AMPK, enhance microglia M2 polarization, decrease inflammatory factors and reduce neuronal apoptosis. Additionally, it increases the proliferation and migration of endothelial cells, promoting the formation of new neurovascular units by regulating the protein of p-AKT. In mice with ischemic stroke induced by middle cerebral artery occlusion/reperfusion (MCAO/R), ZnS NPs significantly reduce the infarct area and restore the mobility of mice owing to the slow release of H<sub>2</sub>S. In summary, our results indicate that ZnS NPs can be used as H<sub>2</sub>S slow-release bioreactors, offering a potentially innovative approach to treat ischemia-reperfusion injury caused by stroke.</div></div>","PeriodicalId":254,"journal":{"name":"Biomaterials","volume":"315 ","pages":"Article 122912"},"PeriodicalIF":12.8000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Zinc sulfide nanoparticles serve as gas slow-release bioreactors for H2S therapy of ischemic stroke\",\"authors\":\"Guangqiang Li , Ruolin Zhang , Keyu Chen , Jiawen Dong , Zhihao Yang , Hangyu Chen , Haipeng Wang , Hui Wang , Huali Lei , Wendai Bao , Min Zhang , Zhidong Xiao , Liang Cheng , Zhiqiang Dong\",\"doi\":\"10.1016/j.biomaterials.2024.122912\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Stroke is one of the leading causes of death and disability in the world. Ischemic stroke causes overproduction of reactive oxygen/nitrogen species (RONS) after reperfusion, triggering inflammatory responses that further leads to cell damage. In order to develop novel neuroprotective materials, we synthesized zinc sulfide nanoparticles (ZnS NPs) to function as gas slow-release bioreactors, showcasing stable and sustained H<sub>2</sub>S release while effectively removing RONS. In cultured cells, ZnS NPs can reduce the oxidative damage caused by oxygen-glucose deprivation and reoxygenation (OGD/R), promote the expression of p-AMPK, enhance microglia M2 polarization, decrease inflammatory factors and reduce neuronal apoptosis. Additionally, it increases the proliferation and migration of endothelial cells, promoting the formation of new neurovascular units by regulating the protein of p-AKT. In mice with ischemic stroke induced by middle cerebral artery occlusion/reperfusion (MCAO/R), ZnS NPs significantly reduce the infarct area and restore the mobility of mice owing to the slow release of H<sub>2</sub>S. In summary, our results indicate that ZnS NPs can be used as H<sub>2</sub>S slow-release bioreactors, offering a potentially innovative approach to treat ischemia-reperfusion injury caused by stroke.</div></div>\",\"PeriodicalId\":254,\"journal\":{\"name\":\"Biomaterials\",\"volume\":\"315 \",\"pages\":\"Article 122912\"},\"PeriodicalIF\":12.8000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomaterials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0142961224004460\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142961224004460","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Zinc sulfide nanoparticles serve as gas slow-release bioreactors for H2S therapy of ischemic stroke
Stroke is one of the leading causes of death and disability in the world. Ischemic stroke causes overproduction of reactive oxygen/nitrogen species (RONS) after reperfusion, triggering inflammatory responses that further leads to cell damage. In order to develop novel neuroprotective materials, we synthesized zinc sulfide nanoparticles (ZnS NPs) to function as gas slow-release bioreactors, showcasing stable and sustained H2S release while effectively removing RONS. In cultured cells, ZnS NPs can reduce the oxidative damage caused by oxygen-glucose deprivation and reoxygenation (OGD/R), promote the expression of p-AMPK, enhance microglia M2 polarization, decrease inflammatory factors and reduce neuronal apoptosis. Additionally, it increases the proliferation and migration of endothelial cells, promoting the formation of new neurovascular units by regulating the protein of p-AKT. In mice with ischemic stroke induced by middle cerebral artery occlusion/reperfusion (MCAO/R), ZnS NPs significantly reduce the infarct area and restore the mobility of mice owing to the slow release of H2S. In summary, our results indicate that ZnS NPs can be used as H2S slow-release bioreactors, offering a potentially innovative approach to treat ischemia-reperfusion injury caused by stroke.
期刊介绍:
Biomaterials is an international journal covering the science and clinical application of biomaterials. A biomaterial is now defined as a substance that has been engineered to take a form which, alone or as part of a complex system, is used to direct, by control of interactions with components of living systems, the course of any therapeutic or diagnostic procedure. It is the aim of the journal to provide a peer-reviewed forum for the publication of original papers and authoritative review and opinion papers dealing with the most important issues facing the use of biomaterials in clinical practice. The scope of the journal covers the wide range of physical, biological and chemical sciences that underpin the design of biomaterials and the clinical disciplines in which they are used. These sciences include polymer synthesis and characterization, drug and gene vector design, the biology of the host response, immunology and toxicology and self assembly at the nanoscale. Clinical applications include the therapies of medical technology and regenerative medicine in all clinical disciplines, and diagnostic systems that reply on innovative contrast and sensing agents. The journal is relevant to areas such as cancer diagnosis and therapy, implantable devices, drug delivery systems, gene vectors, bionanotechnology and tissue engineering.