增强物联网和 IIoT 网络的安全性:利用深度迁移学习的入侵检测方案

IF 7.2 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Knowledge-Based Systems Pub Date : 2024-10-11 DOI:10.1016/j.knosys.2024.112614
Basharat Ahmad , Zhaoliang Wu , Yongfeng Huang , Sadaqat Ur Rehman
{"title":"增强物联网和 IIoT 网络的安全性:利用深度迁移学习的入侵检测方案","authors":"Basharat Ahmad ,&nbsp;Zhaoliang Wu ,&nbsp;Yongfeng Huang ,&nbsp;Sadaqat Ur Rehman","doi":"10.1016/j.knosys.2024.112614","DOIUrl":null,"url":null,"abstract":"<div><div>The Internet of Things (IoT) networks, which are defined by their interconnected devices and data streams are an expanding attack surface for cyber adversaries. Industrial Internet of Things (IIoT) is a subset of IoT and has significant importance in-terms of security. Robust intrusion detection systems (IDS) are essential for protecting these critical infrastructures. Our research suggests a novel approach to the detection of anomalies in IoT and IIoT networks that leverages the capabilities of deep transfer learning. Our methodology begins with the EdgeIIoT dataset, which serves as the basis for our data analysis. We convert the data into an appropriate image format to enable Convolutional Neural Network (CNN)-based processing. The hyper-parameters of individual machine learning models are subsequently optimized using a Random Search algorithm. This optimization phase optimizes the performance of each model by modifying the hyper-parameters that are unique to the learning algorithms. The performance of each model is meticulously assessed subsequent to hyper-parameter optimization. The top-performing models are subsequently, strategically selected and combined using the ensemble technique. The IDS scheme’s overall detection accuracy and generalizability are improved by the integration of strengths from multiple models. The proposed scheme demonstrates significant effectiveness in identifying a broad spectrum of attacks, encompassing a total of 14 distinct attack types. This comprehensive detection capability contributes to a more secure and resilient IoT ecosystem. Furthermore, application of quantization to our best models reduces resource utilization significantly without compromising accuracy.</div></div>","PeriodicalId":49939,"journal":{"name":"Knowledge-Based Systems","volume":null,"pages":null},"PeriodicalIF":7.2000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing the security in IoT and IIoT networks: An intrusion detection scheme leveraging deep transfer learning\",\"authors\":\"Basharat Ahmad ,&nbsp;Zhaoliang Wu ,&nbsp;Yongfeng Huang ,&nbsp;Sadaqat Ur Rehman\",\"doi\":\"10.1016/j.knosys.2024.112614\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The Internet of Things (IoT) networks, which are defined by their interconnected devices and data streams are an expanding attack surface for cyber adversaries. Industrial Internet of Things (IIoT) is a subset of IoT and has significant importance in-terms of security. Robust intrusion detection systems (IDS) are essential for protecting these critical infrastructures. Our research suggests a novel approach to the detection of anomalies in IoT and IIoT networks that leverages the capabilities of deep transfer learning. Our methodology begins with the EdgeIIoT dataset, which serves as the basis for our data analysis. We convert the data into an appropriate image format to enable Convolutional Neural Network (CNN)-based processing. The hyper-parameters of individual machine learning models are subsequently optimized using a Random Search algorithm. This optimization phase optimizes the performance of each model by modifying the hyper-parameters that are unique to the learning algorithms. The performance of each model is meticulously assessed subsequent to hyper-parameter optimization. The top-performing models are subsequently, strategically selected and combined using the ensemble technique. The IDS scheme’s overall detection accuracy and generalizability are improved by the integration of strengths from multiple models. The proposed scheme demonstrates significant effectiveness in identifying a broad spectrum of attacks, encompassing a total of 14 distinct attack types. This comprehensive detection capability contributes to a more secure and resilient IoT ecosystem. Furthermore, application of quantization to our best models reduces resource utilization significantly without compromising accuracy.</div></div>\",\"PeriodicalId\":49939,\"journal\":{\"name\":\"Knowledge-Based Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Knowledge-Based Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0950705124012486\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Knowledge-Based Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0950705124012486","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

物联网(IoT)网络由相互连接的设备和数据流构成,是网络对手不断扩大的攻击面。工业物联网(IIoT)是物联网的一个子集,在安全方面具有重要意义。强大的入侵检测系统(IDS)对于保护这些关键基础设施至关重要。我们的研究提出了一种利用深度迁移学习能力检测物联网和 IIoT 网络异常的新方法。我们的方法从 EdgeIIoT 数据集开始,该数据集是我们进行数据分析的基础。我们将数据转换成适当的图像格式,以便进行基于卷积神经网络(CNN)的处理。随后使用随机搜索算法对各个机器学习模型的超参数进行优化。该优化阶段通过修改学习算法特有的超参数来优化每个模型的性能。超参数优化后,每个模型的性能都会得到细致的评估。随后,利用集合技术战略性地选择并组合性能最佳的模型。通过整合多个模型的优势,IDS 方案的整体检测精度和通用性都得到了提高。所提出的方案在识别各种攻击(共包括 14 种不同的攻击类型)方面效果显著。这种全面的检测能力有助于建立一个更安全、更有弹性的物联网生态系统。此外,在我们的最佳模型中应用量化技术大大降低了资源利用率,同时又不影响准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhancing the security in IoT and IIoT networks: An intrusion detection scheme leveraging deep transfer learning
The Internet of Things (IoT) networks, which are defined by their interconnected devices and data streams are an expanding attack surface for cyber adversaries. Industrial Internet of Things (IIoT) is a subset of IoT and has significant importance in-terms of security. Robust intrusion detection systems (IDS) are essential for protecting these critical infrastructures. Our research suggests a novel approach to the detection of anomalies in IoT and IIoT networks that leverages the capabilities of deep transfer learning. Our methodology begins with the EdgeIIoT dataset, which serves as the basis for our data analysis. We convert the data into an appropriate image format to enable Convolutional Neural Network (CNN)-based processing. The hyper-parameters of individual machine learning models are subsequently optimized using a Random Search algorithm. This optimization phase optimizes the performance of each model by modifying the hyper-parameters that are unique to the learning algorithms. The performance of each model is meticulously assessed subsequent to hyper-parameter optimization. The top-performing models are subsequently, strategically selected and combined using the ensemble technique. The IDS scheme’s overall detection accuracy and generalizability are improved by the integration of strengths from multiple models. The proposed scheme demonstrates significant effectiveness in identifying a broad spectrum of attacks, encompassing a total of 14 distinct attack types. This comprehensive detection capability contributes to a more secure and resilient IoT ecosystem. Furthermore, application of quantization to our best models reduces resource utilization significantly without compromising accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Knowledge-Based Systems
Knowledge-Based Systems 工程技术-计算机:人工智能
CiteScore
14.80
自引率
12.50%
发文量
1245
审稿时长
7.8 months
期刊介绍: Knowledge-Based Systems, an international and interdisciplinary journal in artificial intelligence, publishes original, innovative, and creative research results in the field. It focuses on knowledge-based and other artificial intelligence techniques-based systems. The journal aims to support human prediction and decision-making through data science and computation techniques, provide a balanced coverage of theory and practical study, and encourage the development and implementation of knowledge-based intelligence models, methods, systems, and software tools. Applications in business, government, education, engineering, and healthcare are emphasized.
期刊最新文献
Local Metric NER: A new paradigm for named entity recognition from a multi-label perspective CRATI: Contrastive representation-based multimodal sound event localization and detection ALDANER: Active Learning based Data Augmentation for Named Entity Recognition Robust deadline-aware network function parallelization framework under demand uncertainty PMCN: Parallax-motion collaboration network for stereo video dehazing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1