通过深度集合网络加强土地覆被分类

IF 7.2 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Knowledge-Based Systems Pub Date : 2024-10-11 DOI:10.1016/j.knosys.2024.112611
Muhammad Fayaz , L. Minh Dang , Hyeonjoon Moon
{"title":"通过深度集合网络加强土地覆被分类","authors":"Muhammad Fayaz ,&nbsp;L. Minh Dang ,&nbsp;Hyeonjoon Moon","doi":"10.1016/j.knosys.2024.112611","DOIUrl":null,"url":null,"abstract":"<div><div>The rapid adoption of drones has transformed industries such as agriculture, environmental monitoring, surveillance, and disaster management by enabling more efficient data collection and analysis. However, existing UAV-based image scene classification techniques face limitations, particularly in handling dynamic scenes, varying environmental conditions, and accurately identifying small or partially obscured objects. These challenges necessitate more advanced and robust methods for land cover classification. In response, this study explores ensemble learning (EL) as a powerful alternative to traditional machine learning approaches. By integrating predictions from multiple models, EL enhances accuracy, precision, and robustness in UAV-based land use and land cover classification. This research introduces a two-phase approach combining data preprocessing with feature extraction using three advanced ensemble models DenseNet201, EfficientNetV2S, and Xception employing transfer learning. These models were selected based on their higher performance during preliminary evaluations. Furthermore, a soft attention mechanism is incorporated into the ensembled network to optimize feature selection, resulting in improved classification outcomes. The proposed model achieved an accuracy of 97 %, precision of 96 %, recall of 96 %, and an F1-score of 97 % on UAV image datasets. Comparative analysis reveals a 4.2 % accuracy improvement with the ensembled models and a 1 % boost with the advanced hybrid models. This work significantly advances UAV image scene classification, offering a practical solution to enhance decision-making precision in various applications. The ensemble system demonstrates its effectiveness in remote sensing applications, especially in land cover analysis across diverse geographical and environmental settings.</div></div>","PeriodicalId":49939,"journal":{"name":"Knowledge-Based Systems","volume":null,"pages":null},"PeriodicalIF":7.2000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing land cover classification via deep ensemble network\",\"authors\":\"Muhammad Fayaz ,&nbsp;L. Minh Dang ,&nbsp;Hyeonjoon Moon\",\"doi\":\"10.1016/j.knosys.2024.112611\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The rapid adoption of drones has transformed industries such as agriculture, environmental monitoring, surveillance, and disaster management by enabling more efficient data collection and analysis. However, existing UAV-based image scene classification techniques face limitations, particularly in handling dynamic scenes, varying environmental conditions, and accurately identifying small or partially obscured objects. These challenges necessitate more advanced and robust methods for land cover classification. In response, this study explores ensemble learning (EL) as a powerful alternative to traditional machine learning approaches. By integrating predictions from multiple models, EL enhances accuracy, precision, and robustness in UAV-based land use and land cover classification. This research introduces a two-phase approach combining data preprocessing with feature extraction using three advanced ensemble models DenseNet201, EfficientNetV2S, and Xception employing transfer learning. These models were selected based on their higher performance during preliminary evaluations. Furthermore, a soft attention mechanism is incorporated into the ensembled network to optimize feature selection, resulting in improved classification outcomes. The proposed model achieved an accuracy of 97 %, precision of 96 %, recall of 96 %, and an F1-score of 97 % on UAV image datasets. Comparative analysis reveals a 4.2 % accuracy improvement with the ensembled models and a 1 % boost with the advanced hybrid models. This work significantly advances UAV image scene classification, offering a practical solution to enhance decision-making precision in various applications. The ensemble system demonstrates its effectiveness in remote sensing applications, especially in land cover analysis across diverse geographical and environmental settings.</div></div>\",\"PeriodicalId\":49939,\"journal\":{\"name\":\"Knowledge-Based Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Knowledge-Based Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0950705124012450\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Knowledge-Based Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0950705124012450","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

无人机的快速应用改变了农业、环境监测、监控和灾害管理等行业,实现了更高效的数据收集和分析。然而,现有的基于无人机的图像场景分类技术面临着局限性,尤其是在处理动态场景、不同环境条件以及准确识别小型或部分遮挡物体方面。面对这些挑战,有必要采用更先进、更稳健的方法来进行土地覆被分类。为此,本研究探索了集合学习(EL),将其作为传统机器学习方法的有力替代方案。通过整合多个模型的预测结果,集合学习提高了基于无人机的土地利用和土地覆被分类的准确性、精确性和稳健性。本研究介绍了一种两阶段方法,将数据预处理与特征提取相结合,并使用三种先进的集合模型 DenseNet201、EfficientNetV2S 和采用迁移学习的 Xception。之所以选择这些模型,是因为它们在初步评估中表现较好。此外,还在集合网络中加入了软关注机制,以优化特征选择,从而改善分类结果。所提出的模型在无人机图像数据集上的准确率达到 97%,精确率达到 96%,召回率达到 96%,F1 分数达到 97%。对比分析表明,集合模型的准确率提高了 4.2%,而高级混合模型的准确率提高了 1%。这项工作极大地推动了无人机图像场景分类,为提高各种应用中的决策精度提供了实用的解决方案。集合系统证明了其在遥感应用中的有效性,特别是在不同地理和环境背景下的土地覆盖分析中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhancing land cover classification via deep ensemble network
The rapid adoption of drones has transformed industries such as agriculture, environmental monitoring, surveillance, and disaster management by enabling more efficient data collection and analysis. However, existing UAV-based image scene classification techniques face limitations, particularly in handling dynamic scenes, varying environmental conditions, and accurately identifying small or partially obscured objects. These challenges necessitate more advanced and robust methods for land cover classification. In response, this study explores ensemble learning (EL) as a powerful alternative to traditional machine learning approaches. By integrating predictions from multiple models, EL enhances accuracy, precision, and robustness in UAV-based land use and land cover classification. This research introduces a two-phase approach combining data preprocessing with feature extraction using three advanced ensemble models DenseNet201, EfficientNetV2S, and Xception employing transfer learning. These models were selected based on their higher performance during preliminary evaluations. Furthermore, a soft attention mechanism is incorporated into the ensembled network to optimize feature selection, resulting in improved classification outcomes. The proposed model achieved an accuracy of 97 %, precision of 96 %, recall of 96 %, and an F1-score of 97 % on UAV image datasets. Comparative analysis reveals a 4.2 % accuracy improvement with the ensembled models and a 1 % boost with the advanced hybrid models. This work significantly advances UAV image scene classification, offering a practical solution to enhance decision-making precision in various applications. The ensemble system demonstrates its effectiveness in remote sensing applications, especially in land cover analysis across diverse geographical and environmental settings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Knowledge-Based Systems
Knowledge-Based Systems 工程技术-计算机:人工智能
CiteScore
14.80
自引率
12.50%
发文量
1245
审稿时长
7.8 months
期刊介绍: Knowledge-Based Systems, an international and interdisciplinary journal in artificial intelligence, publishes original, innovative, and creative research results in the field. It focuses on knowledge-based and other artificial intelligence techniques-based systems. The journal aims to support human prediction and decision-making through data science and computation techniques, provide a balanced coverage of theory and practical study, and encourage the development and implementation of knowledge-based intelligence models, methods, systems, and software tools. Applications in business, government, education, engineering, and healthcare are emphasized.
期刊最新文献
Local Metric NER: A new paradigm for named entity recognition from a multi-label perspective CRATI: Contrastive representation-based multimodal sound event localization and detection ALDANER: Active Learning based Data Augmentation for Named Entity Recognition Robust deadline-aware network function parallelization framework under demand uncertainty PMCN: Parallax-motion collaboration network for stereo video dehazing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1