{"title":"统一概率图模型和深度强化学习(UPGMDRL)用于多交叉口交通信号控制","authors":"","doi":"10.1016/j.knosys.2024.112663","DOIUrl":null,"url":null,"abstract":"<div><div>Traffic signals play a pivotal role in modern life by preventing collisions, regulating traffic flow, and ensuring a predictable and efficient transportation system. Adaptive traffic light signal control (ATSC) is a promising paradigm for mitigating traffic congestion in Intelligent Transportation Systems (ITS). Among various AI-based approaches, Deep Reinforcement Learning (DRL) has gained widespread application, demonstrating superior performance. This paper aims to develop a latent space reinforcement learning method for intelligent traffic control, with a focus on making explainable decisions. According to the latent model and hidden Markov mixed model, this method integrated both to develop an ATSC framework for traffic networks with multiple intersections. Given the challenges posed by high-dimensional data and a limited understanding of the task, traditional decision-making methods often struggle with understanding the environment. This paper aims to provide semantic information and an enhanced understanding of the environment by offering interpretable states. The latent model is employed to extract task-relevant information from underlying representations within a framework that unifies representation learning and DRL. The experimental results demonstrate how our approach effectively and efficiently balances traffic flow, leading to improved traffic management.</div></div>","PeriodicalId":49939,"journal":{"name":"Knowledge-Based Systems","volume":null,"pages":null},"PeriodicalIF":7.2000,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unification of probabilistic graph model and deep reinforcement learning (UPGMDRL) for multi-intersection traffic signal control\",\"authors\":\"\",\"doi\":\"10.1016/j.knosys.2024.112663\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Traffic signals play a pivotal role in modern life by preventing collisions, regulating traffic flow, and ensuring a predictable and efficient transportation system. Adaptive traffic light signal control (ATSC) is a promising paradigm for mitigating traffic congestion in Intelligent Transportation Systems (ITS). Among various AI-based approaches, Deep Reinforcement Learning (DRL) has gained widespread application, demonstrating superior performance. This paper aims to develop a latent space reinforcement learning method for intelligent traffic control, with a focus on making explainable decisions. According to the latent model and hidden Markov mixed model, this method integrated both to develop an ATSC framework for traffic networks with multiple intersections. Given the challenges posed by high-dimensional data and a limited understanding of the task, traditional decision-making methods often struggle with understanding the environment. This paper aims to provide semantic information and an enhanced understanding of the environment by offering interpretable states. The latent model is employed to extract task-relevant information from underlying representations within a framework that unifies representation learning and DRL. The experimental results demonstrate how our approach effectively and efficiently balances traffic flow, leading to improved traffic management.</div></div>\",\"PeriodicalId\":49939,\"journal\":{\"name\":\"Knowledge-Based Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2024-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Knowledge-Based Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0950705124012978\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Knowledge-Based Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0950705124012978","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Unification of probabilistic graph model and deep reinforcement learning (UPGMDRL) for multi-intersection traffic signal control
Traffic signals play a pivotal role in modern life by preventing collisions, regulating traffic flow, and ensuring a predictable and efficient transportation system. Adaptive traffic light signal control (ATSC) is a promising paradigm for mitigating traffic congestion in Intelligent Transportation Systems (ITS). Among various AI-based approaches, Deep Reinforcement Learning (DRL) has gained widespread application, demonstrating superior performance. This paper aims to develop a latent space reinforcement learning method for intelligent traffic control, with a focus on making explainable decisions. According to the latent model and hidden Markov mixed model, this method integrated both to develop an ATSC framework for traffic networks with multiple intersections. Given the challenges posed by high-dimensional data and a limited understanding of the task, traditional decision-making methods often struggle with understanding the environment. This paper aims to provide semantic information and an enhanced understanding of the environment by offering interpretable states. The latent model is employed to extract task-relevant information from underlying representations within a framework that unifies representation learning and DRL. The experimental results demonstrate how our approach effectively and efficiently balances traffic flow, leading to improved traffic management.
期刊介绍:
Knowledge-Based Systems, an international and interdisciplinary journal in artificial intelligence, publishes original, innovative, and creative research results in the field. It focuses on knowledge-based and other artificial intelligence techniques-based systems. The journal aims to support human prediction and decision-making through data science and computation techniques, provide a balanced coverage of theory and practical study, and encourage the development and implementation of knowledge-based intelligence models, methods, systems, and software tools. Applications in business, government, education, engineering, and healthcare are emphasized.