基于概念边缘的技能背景下的概念认知学习方法

IF 7.2 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Knowledge-Based Systems Pub Date : 2024-10-15 DOI:10.1016/j.knosys.2024.112618
Hai-Long Yang , Yin-Feng Zhou , Jin-Jin Li , Weiping Ding
{"title":"基于概念边缘的技能背景下的概念认知学习方法","authors":"Hai-Long Yang ,&nbsp;Yin-Feng Zhou ,&nbsp;Jin-Jin Li ,&nbsp;Weiping Ding","doi":"10.1016/j.knosys.2024.112618","DOIUrl":null,"url":null,"abstract":"<div><div>Concept-cognitive learning has achieved remarkable results in simulating the learning of concepts. However, the existing concept-cognitive learning models mainly focus on how knowledge is acquired, but ignore the fact that knowledge transfer and knowledge forgetting may occur during the process of learning skills and solving items. This limits the application of concept-cognitive learning in predicting knowledge states and assessing competence states in skill contexts. To overcome this limitation, this paper provides a new concept-cognitive learning method for property-oriented concepts and object-oriented concepts in skill context. Corresponding to the conjunctive model and the disjunctive model, the inner and outer fringes of property-oriented concept and object-oriented concept are first defined, respectively. In this way, items or skills that are easily forgotten and those that are in the zone of proximal development can be found under both models. Furthermore, the Jaccard similarity coefficient is used to diversify the learning outcomes by finding items and skills that are most likely to occur knowledge forgetting or knowledge transfer. Thus, based on the fringes of concepts, the algorithms to learn property-oriented concepts and object-oriented concepts are provided, respectively. Finally, the case study on a real world example and the experimental evaluation on six data sets from UCI demonstrate that the proposed method is of practical significance and effective in terms of running time.</div></div>","PeriodicalId":49939,"journal":{"name":"Knowledge-Based Systems","volume":null,"pages":null},"PeriodicalIF":7.2000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A concept fringe-based concept-cognitive learning method in skill context\",\"authors\":\"Hai-Long Yang ,&nbsp;Yin-Feng Zhou ,&nbsp;Jin-Jin Li ,&nbsp;Weiping Ding\",\"doi\":\"10.1016/j.knosys.2024.112618\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Concept-cognitive learning has achieved remarkable results in simulating the learning of concepts. However, the existing concept-cognitive learning models mainly focus on how knowledge is acquired, but ignore the fact that knowledge transfer and knowledge forgetting may occur during the process of learning skills and solving items. This limits the application of concept-cognitive learning in predicting knowledge states and assessing competence states in skill contexts. To overcome this limitation, this paper provides a new concept-cognitive learning method for property-oriented concepts and object-oriented concepts in skill context. Corresponding to the conjunctive model and the disjunctive model, the inner and outer fringes of property-oriented concept and object-oriented concept are first defined, respectively. In this way, items or skills that are easily forgotten and those that are in the zone of proximal development can be found under both models. Furthermore, the Jaccard similarity coefficient is used to diversify the learning outcomes by finding items and skills that are most likely to occur knowledge forgetting or knowledge transfer. Thus, based on the fringes of concepts, the algorithms to learn property-oriented concepts and object-oriented concepts are provided, respectively. Finally, the case study on a real world example and the experimental evaluation on six data sets from UCI demonstrate that the proposed method is of practical significance and effective in terms of running time.</div></div>\",\"PeriodicalId\":49939,\"journal\":{\"name\":\"Knowledge-Based Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Knowledge-Based Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0950705124012528\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Knowledge-Based Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0950705124012528","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

概念认知学习在模拟概念学习方面取得了显著成效。然而,现有的概念-认知学习模型主要关注知识是如何获得的,却忽视了在学习技能和解决题目的过程中可能发生的知识迁移和知识遗忘。这就限制了概念认知学习在预测知识状态和评估技能情境中的能力状态方面的应用。为了克服这一局限,本文针对技能情境中的面向属性概念和面向对象概念提出了一种新的概念认知学习方法。与连接模型和非连接模型相对应,首先分别定义了面向属性概念和面向对象概念的内缘和外缘。这样,容易遗忘的项目或技能和处于最近发展区的项目或技能就可以在这两种模式下找到。此外,通过 Jaccard 相似系数,找到最有可能发生知识遗忘或知识迁移的项目和技能,从而实现学习成果的多样化。因此,基于概念的边缘,分别提供了学习面向属性概念和面向对象概念的算法。最后,对一个真实世界的例子进行了案例研究,并对来自 UCI 的六个数据集进行了实验评估,证明所提出的方法在运行时间方面具有实际意义和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A concept fringe-based concept-cognitive learning method in skill context
Concept-cognitive learning has achieved remarkable results in simulating the learning of concepts. However, the existing concept-cognitive learning models mainly focus on how knowledge is acquired, but ignore the fact that knowledge transfer and knowledge forgetting may occur during the process of learning skills and solving items. This limits the application of concept-cognitive learning in predicting knowledge states and assessing competence states in skill contexts. To overcome this limitation, this paper provides a new concept-cognitive learning method for property-oriented concepts and object-oriented concepts in skill context. Corresponding to the conjunctive model and the disjunctive model, the inner and outer fringes of property-oriented concept and object-oriented concept are first defined, respectively. In this way, items or skills that are easily forgotten and those that are in the zone of proximal development can be found under both models. Furthermore, the Jaccard similarity coefficient is used to diversify the learning outcomes by finding items and skills that are most likely to occur knowledge forgetting or knowledge transfer. Thus, based on the fringes of concepts, the algorithms to learn property-oriented concepts and object-oriented concepts are provided, respectively. Finally, the case study on a real world example and the experimental evaluation on six data sets from UCI demonstrate that the proposed method is of practical significance and effective in terms of running time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Knowledge-Based Systems
Knowledge-Based Systems 工程技术-计算机:人工智能
CiteScore
14.80
自引率
12.50%
发文量
1245
审稿时长
7.8 months
期刊介绍: Knowledge-Based Systems, an international and interdisciplinary journal in artificial intelligence, publishes original, innovative, and creative research results in the field. It focuses on knowledge-based and other artificial intelligence techniques-based systems. The journal aims to support human prediction and decision-making through data science and computation techniques, provide a balanced coverage of theory and practical study, and encourage the development and implementation of knowledge-based intelligence models, methods, systems, and software tools. Applications in business, government, education, engineering, and healthcare are emphasized.
期刊最新文献
Local Metric NER: A new paradigm for named entity recognition from a multi-label perspective CRATI: Contrastive representation-based multimodal sound event localization and detection ALDANER: Active Learning based Data Augmentation for Named Entity Recognition Robust deadline-aware network function parallelization framework under demand uncertainty PMCN: Parallax-motion collaboration network for stereo video dehazing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1