信任数字基于信任的决策问题处理模型

IF 7.2 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Knowledge-Based Systems Pub Date : 2024-10-13 DOI:10.1016/j.knosys.2024.112631
Saeid Jafarzadeh Ghoushchi , Abbas Mardani , Luis Martínez
{"title":"信任数字基于信任的决策问题处理模型","authors":"Saeid Jafarzadeh Ghoushchi ,&nbsp;Abbas Mardani ,&nbsp;Luis Martínez","doi":"10.1016/j.knosys.2024.112631","DOIUrl":null,"url":null,"abstract":"<div><div>Fuzzy sets play an effective role in dealing with the uncertainty and ambiguity of input data in real-world decision-making problems. Nevertheless, the effectiveness of fuzzy sets becomes unreliable and even more uncertain when the input data come from untrustworthy sources. Therefore, a new measurement could be considered based on the data's degree of trust to reduce the deviation of unreliable information in fuzzy decision-making problems. The main aim of this study is to introduce a new information modeling called trust numbers (T-numbers), which models variations and deviations associated with triangular fuzzy numbers and their application to decision-making. In addition, it introduces new operations on T-numbers to develop a decision model based on this theory. The performance of this model was analyzed through its implementation in two case studies and by comparing the fuzzy technique for order of Preference by similarity to the ideal solution (F-TOPSIS) and its T-number extension(T-TOPSIS). Results indicate that T-numbers can be applied to classical fuzzy numbers when the available information is uncertain and a degree of distrust exists.</div></div>","PeriodicalId":49939,"journal":{"name":"Knowledge-Based Systems","volume":"305 ","pages":"Article 112631"},"PeriodicalIF":7.2000,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Trust number: Trust-based modeling for handling decision-making problems\",\"authors\":\"Saeid Jafarzadeh Ghoushchi ,&nbsp;Abbas Mardani ,&nbsp;Luis Martínez\",\"doi\":\"10.1016/j.knosys.2024.112631\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Fuzzy sets play an effective role in dealing with the uncertainty and ambiguity of input data in real-world decision-making problems. Nevertheless, the effectiveness of fuzzy sets becomes unreliable and even more uncertain when the input data come from untrustworthy sources. Therefore, a new measurement could be considered based on the data's degree of trust to reduce the deviation of unreliable information in fuzzy decision-making problems. The main aim of this study is to introduce a new information modeling called trust numbers (T-numbers), which models variations and deviations associated with triangular fuzzy numbers and their application to decision-making. In addition, it introduces new operations on T-numbers to develop a decision model based on this theory. The performance of this model was analyzed through its implementation in two case studies and by comparing the fuzzy technique for order of Preference by similarity to the ideal solution (F-TOPSIS) and its T-number extension(T-TOPSIS). Results indicate that T-numbers can be applied to classical fuzzy numbers when the available information is uncertain and a degree of distrust exists.</div></div>\",\"PeriodicalId\":49939,\"journal\":{\"name\":\"Knowledge-Based Systems\",\"volume\":\"305 \",\"pages\":\"Article 112631\"},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2024-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Knowledge-Based Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0950705124012656\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Knowledge-Based Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0950705124012656","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

在现实世界的决策问题中,模糊集在处理输入数据的不确定性和模糊性方面发挥着有效的作用。然而,当输入数据来源不可信时,模糊集的有效性就会变得不可靠,甚至更加不确定。因此,可以考虑采用一种基于数据可信度的新测量方法,以减少模糊决策问题中不可靠信息的偏差。本研究的主要目的是引入一种新的信息模型,即信任数(T-numbers),它可以模拟与三角模糊数相关的变化和偏差,并将其应用于决策。此外,它还引入了 T 数的新运算,以开发基于该理论的决策模型。通过在两个案例研究中实施该模型,并通过比较与理想解决方案相似性排序的模糊技术(F-TOPSIS)及其 T 数扩展(T-TOPSIS),分析了该模型的性能。结果表明,当可用信息不确定且存在一定程度的不信任时,T 数可应用于经典模糊数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Trust number: Trust-based modeling for handling decision-making problems
Fuzzy sets play an effective role in dealing with the uncertainty and ambiguity of input data in real-world decision-making problems. Nevertheless, the effectiveness of fuzzy sets becomes unreliable and even more uncertain when the input data come from untrustworthy sources. Therefore, a new measurement could be considered based on the data's degree of trust to reduce the deviation of unreliable information in fuzzy decision-making problems. The main aim of this study is to introduce a new information modeling called trust numbers (T-numbers), which models variations and deviations associated with triangular fuzzy numbers and their application to decision-making. In addition, it introduces new operations on T-numbers to develop a decision model based on this theory. The performance of this model was analyzed through its implementation in two case studies and by comparing the fuzzy technique for order of Preference by similarity to the ideal solution (F-TOPSIS) and its T-number extension(T-TOPSIS). Results indicate that T-numbers can be applied to classical fuzzy numbers when the available information is uncertain and a degree of distrust exists.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Knowledge-Based Systems
Knowledge-Based Systems 工程技术-计算机:人工智能
CiteScore
14.80
自引率
12.50%
发文量
1245
审稿时长
7.8 months
期刊介绍: Knowledge-Based Systems, an international and interdisciplinary journal in artificial intelligence, publishes original, innovative, and creative research results in the field. It focuses on knowledge-based and other artificial intelligence techniques-based systems. The journal aims to support human prediction and decision-making through data science and computation techniques, provide a balanced coverage of theory and practical study, and encourage the development and implementation of knowledge-based intelligence models, methods, systems, and software tools. Applications in business, government, education, engineering, and healthcare are emphasized.
期刊最新文献
Editorial Board Local Metric NER: A new paradigm for named entity recognition from a multi-label perspective CRATI: Contrastive representation-based multimodal sound event localization and detection ALDANER: Active Learning based Data Augmentation for Named Entity Recognition Robust deadline-aware network function parallelization framework under demand uncertainty
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1