用于单级物体检测的抗错位域自适应学习

IF 7.2 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Knowledge-Based Systems Pub Date : 2024-10-11 DOI:10.1016/j.knosys.2024.112605
Yunfei Bai , Chang Liu , Rui Yang , Xiaomao Li
{"title":"用于单级物体检测的抗错位域自适应学习","authors":"Yunfei Bai ,&nbsp;Chang Liu ,&nbsp;Rui Yang ,&nbsp;Xiaomao Li","doi":"10.1016/j.knosys.2024.112605","DOIUrl":null,"url":null,"abstract":"<div><div>Without consideration of task specificity, directly transforming domain adaptive pipelines from classification to one-stage detection tends to pose severer misalignments. These misalignments include: (1) Foreground misalignment that the domain discriminator obsessively concentrates on backgrounds since one-stage detectors do not contain proposals for instance-level discrimination. (2) Localization misalignment that domain-adaptive features supervised by the domain discriminator are not suitable for localization tasks, as the discriminator is a classifier in essence. To tackle these problems, we propose the <strong>Misalignment-Resistant Domain Adaption</strong> (MRDA) for one-stage detectors. Specifically, to alleviate foreground misalignment, a mask-based domain discriminator is proposed to perform instance-level discrimination by assigning the pixel-level domain labels based on instance-level masks. As for localization misalignment, a localization discriminator is introduced to learn domain-adaptive features for localization tasks. It employs an additional box-regression branch with an IoU loss to perform adversarial mutual supervision with the feature extractor. Comprehensive experiments demonstrate that our method effectively mitigates the misalignments and achieves state-of-the-art detection across multiple datasets.</div></div>","PeriodicalId":49939,"journal":{"name":"Knowledge-Based Systems","volume":null,"pages":null},"PeriodicalIF":7.2000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Misalignment-resistant domain adaptive learning for one-stage object detection\",\"authors\":\"Yunfei Bai ,&nbsp;Chang Liu ,&nbsp;Rui Yang ,&nbsp;Xiaomao Li\",\"doi\":\"10.1016/j.knosys.2024.112605\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Without consideration of task specificity, directly transforming domain adaptive pipelines from classification to one-stage detection tends to pose severer misalignments. These misalignments include: (1) Foreground misalignment that the domain discriminator obsessively concentrates on backgrounds since one-stage detectors do not contain proposals for instance-level discrimination. (2) Localization misalignment that domain-adaptive features supervised by the domain discriminator are not suitable for localization tasks, as the discriminator is a classifier in essence. To tackle these problems, we propose the <strong>Misalignment-Resistant Domain Adaption</strong> (MRDA) for one-stage detectors. Specifically, to alleviate foreground misalignment, a mask-based domain discriminator is proposed to perform instance-level discrimination by assigning the pixel-level domain labels based on instance-level masks. As for localization misalignment, a localization discriminator is introduced to learn domain-adaptive features for localization tasks. It employs an additional box-regression branch with an IoU loss to perform adversarial mutual supervision with the feature extractor. Comprehensive experiments demonstrate that our method effectively mitigates the misalignments and achieves state-of-the-art detection across multiple datasets.</div></div>\",\"PeriodicalId\":49939,\"journal\":{\"name\":\"Knowledge-Based Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Knowledge-Based Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0950705124012395\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Knowledge-Based Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0950705124012395","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

如果不考虑任务的特殊性,直接将领域自适应管道从分类转换为单级检测,往往会造成更严重的错位。这些错位包括(1) 前景错位:由于单级检测器不包含实例级判别建议,因此领域判别器会过度关注背景。(2) 定位失准,领域判别器监督的领域自适应特征不适合定位任务,因为判别器本质上是一个分类器。为了解决这些问题,我们提出了针对单级检测器的抗错位域自适应(Misalignment-Resistant Domain Adaption,MRDA)。具体来说,为了减轻前景错位,我们提出了一种基于掩码的域判别器,通过基于实例级掩码分配像素级域标签来执行实例级判别。至于定位错位,则引入了一个定位判别器来学习定位任务的域自适应特征。它采用了额外的盒回归分支和 IoU 损失,与特征提取器一起执行对抗性相互监督。综合实验证明,我们的方法能有效缓解错位,并在多个数据集上实现了最先进的检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Misalignment-resistant domain adaptive learning for one-stage object detection
Without consideration of task specificity, directly transforming domain adaptive pipelines from classification to one-stage detection tends to pose severer misalignments. These misalignments include: (1) Foreground misalignment that the domain discriminator obsessively concentrates on backgrounds since one-stage detectors do not contain proposals for instance-level discrimination. (2) Localization misalignment that domain-adaptive features supervised by the domain discriminator are not suitable for localization tasks, as the discriminator is a classifier in essence. To tackle these problems, we propose the Misalignment-Resistant Domain Adaption (MRDA) for one-stage detectors. Specifically, to alleviate foreground misalignment, a mask-based domain discriminator is proposed to perform instance-level discrimination by assigning the pixel-level domain labels based on instance-level masks. As for localization misalignment, a localization discriminator is introduced to learn domain-adaptive features for localization tasks. It employs an additional box-regression branch with an IoU loss to perform adversarial mutual supervision with the feature extractor. Comprehensive experiments demonstrate that our method effectively mitigates the misalignments and achieves state-of-the-art detection across multiple datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Knowledge-Based Systems
Knowledge-Based Systems 工程技术-计算机:人工智能
CiteScore
14.80
自引率
12.50%
发文量
1245
审稿时长
7.8 months
期刊介绍: Knowledge-Based Systems, an international and interdisciplinary journal in artificial intelligence, publishes original, innovative, and creative research results in the field. It focuses on knowledge-based and other artificial intelligence techniques-based systems. The journal aims to support human prediction and decision-making through data science and computation techniques, provide a balanced coverage of theory and practical study, and encourage the development and implementation of knowledge-based intelligence models, methods, systems, and software tools. Applications in business, government, education, engineering, and healthcare are emphasized.
期刊最新文献
Local Metric NER: A new paradigm for named entity recognition from a multi-label perspective CRATI: Contrastive representation-based multimodal sound event localization and detection ALDANER: Active Learning based Data Augmentation for Named Entity Recognition Robust deadline-aware network function parallelization framework under demand uncertainty PMCN: Parallax-motion collaboration network for stereo video dehazing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1