{"title":"极端侧向荷载下钢柱的导柱机制:建筑物渐进式倒塌分析的基础","authors":"Foad Kiakojouri, Valerio De Biagi","doi":"10.1016/j.dibe.2024.100556","DOIUrl":null,"url":null,"abstract":"<div><div>The studies on progressive collapse have primarily focused on threat-independent methods, wherein a sudden column removal is suggested in codes. However, a real collapse scenario is necessarily threat-dependent. Focusing on blast- and impact-induced progressive collapses, the current study considers cases in which damage is concentrated in a single member, without resulting in complete column loss. It is demonstrated that the progressive collapse performance under specific threats can be better or worse compared to that of sudden column removal. Thus, dynamic column removal does not necessarily guarantee the most critical scenario, as the response in a damaged system can sometimes exceed expectations. A simple analytical model is proposed to describe in detail the observed phenomena and emphasizes the development of catenary forces in the column under lateral extreme loading scenarios. The results provide a deeper insight into the progressive collapse performance of frame systems and the involved member-level resisting mechanisms.</div></div>","PeriodicalId":34137,"journal":{"name":"Developments in the Built Environment","volume":"20 ","pages":"Article 100556"},"PeriodicalIF":6.2000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Catenary mechanism in steel columns under extreme lateral loading: A basis for building progressive collapse analysis\",\"authors\":\"Foad Kiakojouri, Valerio De Biagi\",\"doi\":\"10.1016/j.dibe.2024.100556\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The studies on progressive collapse have primarily focused on threat-independent methods, wherein a sudden column removal is suggested in codes. However, a real collapse scenario is necessarily threat-dependent. Focusing on blast- and impact-induced progressive collapses, the current study considers cases in which damage is concentrated in a single member, without resulting in complete column loss. It is demonstrated that the progressive collapse performance under specific threats can be better or worse compared to that of sudden column removal. Thus, dynamic column removal does not necessarily guarantee the most critical scenario, as the response in a damaged system can sometimes exceed expectations. A simple analytical model is proposed to describe in detail the observed phenomena and emphasizes the development of catenary forces in the column under lateral extreme loading scenarios. The results provide a deeper insight into the progressive collapse performance of frame systems and the involved member-level resisting mechanisms.</div></div>\",\"PeriodicalId\":34137,\"journal\":{\"name\":\"Developments in the Built Environment\",\"volume\":\"20 \",\"pages\":\"Article 100556\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2024-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Developments in the Built Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666165924002370\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developments in the Built Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666165924002370","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Catenary mechanism in steel columns under extreme lateral loading: A basis for building progressive collapse analysis
The studies on progressive collapse have primarily focused on threat-independent methods, wherein a sudden column removal is suggested in codes. However, a real collapse scenario is necessarily threat-dependent. Focusing on blast- and impact-induced progressive collapses, the current study considers cases in which damage is concentrated in a single member, without resulting in complete column loss. It is demonstrated that the progressive collapse performance under specific threats can be better or worse compared to that of sudden column removal. Thus, dynamic column removal does not necessarily guarantee the most critical scenario, as the response in a damaged system can sometimes exceed expectations. A simple analytical model is proposed to describe in detail the observed phenomena and emphasizes the development of catenary forces in the column under lateral extreme loading scenarios. The results provide a deeper insight into the progressive collapse performance of frame systems and the involved member-level resisting mechanisms.
期刊介绍:
Developments in the Built Environment (DIBE) is a recently established peer-reviewed gold open access journal, ensuring that all accepted articles are permanently and freely accessible. Focused on civil engineering and the built environment, DIBE publishes original papers and short communications. Encompassing topics such as construction materials and building sustainability, the journal adopts a holistic approach with the aim of benefiting the community.