{"title":"粒度组成对纤维加固水泥基尾岩填料挠曲响应和孔隙结构的影响","authors":"Hao Qin , Shuai Cao , Erol Yilmaz","doi":"10.1016/j.dibe.2024.100558","DOIUrl":null,"url":null,"abstract":"<div><div>This paper explores the grain-size composition effect on flexural and micro-structural features of fiber reinforced cementitious tail-rock fill (FRCTRF). The FRCTRF mixes considered contained a stationary solid concentration of 70 wt% and a cement/tail rate of 1:6, and were cured for an age of 7-day for strength tests and microstructure. Three-point bending test shows that FRCTRF’s bending property is upgraded by totaling gravel rock. Adding fiber to FRCTRF’s bottom can enhance its peak deflection. With rising gravel particle size/dosage, FRCTRF’s peak deflection displays a trend of falling first and then growing. Accumulating polypropylene fiber could advance FRCTRF’s post-peak strength features as well. FRCTRF sample containing gravel has a large stress drop, and adding gravel rock could essentially boost FRCTRF’s post-peak brittle-ability. In conclusion, this study provides a strong scientific and theoretical underpinning for optimizing artificial false roofs employed recently in modern underground metalliferous mining operations.</div></div>","PeriodicalId":34137,"journal":{"name":"Developments in the Built Environment","volume":"20 ","pages":"Article 100558"},"PeriodicalIF":6.2000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Grain-size composition effect on flexural response and pore structure of cementitious tail-rock fills with fiber reinforcement\",\"authors\":\"Hao Qin , Shuai Cao , Erol Yilmaz\",\"doi\":\"10.1016/j.dibe.2024.100558\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper explores the grain-size composition effect on flexural and micro-structural features of fiber reinforced cementitious tail-rock fill (FRCTRF). The FRCTRF mixes considered contained a stationary solid concentration of 70 wt% and a cement/tail rate of 1:6, and were cured for an age of 7-day for strength tests and microstructure. Three-point bending test shows that FRCTRF’s bending property is upgraded by totaling gravel rock. Adding fiber to FRCTRF’s bottom can enhance its peak deflection. With rising gravel particle size/dosage, FRCTRF’s peak deflection displays a trend of falling first and then growing. Accumulating polypropylene fiber could advance FRCTRF’s post-peak strength features as well. FRCTRF sample containing gravel has a large stress drop, and adding gravel rock could essentially boost FRCTRF’s post-peak brittle-ability. In conclusion, this study provides a strong scientific and theoretical underpinning for optimizing artificial false roofs employed recently in modern underground metalliferous mining operations.</div></div>\",\"PeriodicalId\":34137,\"journal\":{\"name\":\"Developments in the Built Environment\",\"volume\":\"20 \",\"pages\":\"Article 100558\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Developments in the Built Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666165924002394\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developments in the Built Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666165924002394","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Grain-size composition effect on flexural response and pore structure of cementitious tail-rock fills with fiber reinforcement
This paper explores the grain-size composition effect on flexural and micro-structural features of fiber reinforced cementitious tail-rock fill (FRCTRF). The FRCTRF mixes considered contained a stationary solid concentration of 70 wt% and a cement/tail rate of 1:6, and were cured for an age of 7-day for strength tests and microstructure. Three-point bending test shows that FRCTRF’s bending property is upgraded by totaling gravel rock. Adding fiber to FRCTRF’s bottom can enhance its peak deflection. With rising gravel particle size/dosage, FRCTRF’s peak deflection displays a trend of falling first and then growing. Accumulating polypropylene fiber could advance FRCTRF’s post-peak strength features as well. FRCTRF sample containing gravel has a large stress drop, and adding gravel rock could essentially boost FRCTRF’s post-peak brittle-ability. In conclusion, this study provides a strong scientific and theoretical underpinning for optimizing artificial false roofs employed recently in modern underground metalliferous mining operations.
期刊介绍:
Developments in the Built Environment (DIBE) is a recently established peer-reviewed gold open access journal, ensuring that all accepted articles are permanently and freely accessible. Focused on civil engineering and the built environment, DIBE publishes original papers and short communications. Encompassing topics such as construction materials and building sustainability, the journal adopts a holistic approach with the aim of benefiting the community.