Ludovico Theo Giorgini , Andre N. Souza , Peter J. Schmid
{"title":"动态系统的还原马尔可夫模型","authors":"Ludovico Theo Giorgini , Andre N. Souza , Peter J. Schmid","doi":"10.1016/j.physd.2024.134393","DOIUrl":null,"url":null,"abstract":"<div><div>Leveraging recent work on data-driven methods for constructing a finite state space Markov process from dynamical systems, we address two problems for obtaining further reduced statistical representations. The first problem is to extract the most salient reduced-order dynamics for a given timescale by using a modified clustering algorithm from network theory. The second problem is to provide an alternative construction for the infinitesimal generator of a Markov process that respects statistical features over a large range of time scales. We demonstrate the methodology on three low-dimensional dynamical systems with stochastic and chaotic dynamics. We then apply the method to two high-dimensional dynamical systems, the Kuramoto–Sivashinky equations and data sampled from fluid-flow experiments via Particle Image Velocimetry. We show that the methodology presented herein provides a robust reduced-order statistical representation of the underlying system.</div></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reduced Markovian models of dynamical systems\",\"authors\":\"Ludovico Theo Giorgini , Andre N. Souza , Peter J. Schmid\",\"doi\":\"10.1016/j.physd.2024.134393\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Leveraging recent work on data-driven methods for constructing a finite state space Markov process from dynamical systems, we address two problems for obtaining further reduced statistical representations. The first problem is to extract the most salient reduced-order dynamics for a given timescale by using a modified clustering algorithm from network theory. The second problem is to provide an alternative construction for the infinitesimal generator of a Markov process that respects statistical features over a large range of time scales. We demonstrate the methodology on three low-dimensional dynamical systems with stochastic and chaotic dynamics. We then apply the method to two high-dimensional dynamical systems, the Kuramoto–Sivashinky equations and data sampled from fluid-flow experiments via Particle Image Velocimetry. We show that the methodology presented herein provides a robust reduced-order statistical representation of the underlying system.</div></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167278924003439\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167278924003439","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Leveraging recent work on data-driven methods for constructing a finite state space Markov process from dynamical systems, we address two problems for obtaining further reduced statistical representations. The first problem is to extract the most salient reduced-order dynamics for a given timescale by using a modified clustering algorithm from network theory. The second problem is to provide an alternative construction for the infinitesimal generator of a Markov process that respects statistical features over a large range of time scales. We demonstrate the methodology on three low-dimensional dynamical systems with stochastic and chaotic dynamics. We then apply the method to two high-dimensional dynamical systems, the Kuramoto–Sivashinky equations and data sampled from fluid-flow experiments via Particle Image Velocimetry. We show that the methodology presented herein provides a robust reduced-order statistical representation of the underlying system.