优化水氮管理,平衡中国稻田的温室气体排放和产量

IF 5.6 1区 农林科学 Q1 AGRONOMY Field Crops Research Pub Date : 2024-10-24 DOI:10.1016/j.fcr.2024.109621
{"title":"优化水氮管理,平衡中国稻田的温室气体排放和产量","authors":"","doi":"10.1016/j.fcr.2024.109621","DOIUrl":null,"url":null,"abstract":"<div><h3>Context</h3><div>Irrigation and fertilizer applications, the two most common practices to ensure high yield, affect almost all soil biogeochemical processes including greenhouse gas (GHG) emissions. How to balance irrigation and nitrogen application in farmland to synergize GHG emissions and crop yield is an inherent requirement for achieving sustainability, particularly in China rice paddy fields.</div></div><div><h3>Objective</h3><div>In this study, we first acquired data on GHG emissions and crop yield from rice field experiments worldwide under various irrigation and nitrogen application conditions. Subsequently, based on this dataset, we conducted modeling analysis using machine learning techniques to assess the optimization potential of irrigation and nitrogen fertilizer application in Chinese rice fields, aiming to achieve synergistic reductions in GHG emissions and improvements in crop yield under both historical and future climate scenarios.</div></div><div><h3>Results and conclusions</h3><div>The results indicated that the selected input features provided good predictive accuracy for rice yield and Global Warming Potential (GWP) in rice fields, with R² of 0.71 and 0.85, respectively. Furthermore, upon optimizing irrigation water usage in China rice fields to concurrently address GHG emissions and crop yield, the potential reductions in irrigation water were found to be −21.5 %, −29.1 %, and −13 % under past climate conditions, the SSP126 scenario, and the SSP585 scenario, respectively. After jointly optimizing both irrigation water and nitrogen fertilizer application, the reduction in irrigation water under past climate conditions, the SSP126 scenario, and the SSP585 scenario were −23 %, −31.4 %, and −16.9 % respectively. Correspondingly, the reductions in nitrogen fertilizer application were −22.9 %, −27.3 %, and −24.84 % for each scenario. Additionally, the study revealed a significant regional disparity between the northern and southern regions of China in these optimizations. Overall, southern China exhibits greater potential for irrigation water savings and rice yield increases compared to northern regions, while the potential for greenhouse gas emission reduction is higher in the north.</div></div><div><h3>Significant</h3><div>The findings provided both direction and quantifiable data support for the sustainable production of rice.</div></div>","PeriodicalId":12143,"journal":{"name":"Field Crops Research","volume":null,"pages":null},"PeriodicalIF":5.6000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing water and nitrogen management to balance greenhouse gas emissions and yield in Chinese rice paddies\",\"authors\":\"\",\"doi\":\"10.1016/j.fcr.2024.109621\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Context</h3><div>Irrigation and fertilizer applications, the two most common practices to ensure high yield, affect almost all soil biogeochemical processes including greenhouse gas (GHG) emissions. How to balance irrigation and nitrogen application in farmland to synergize GHG emissions and crop yield is an inherent requirement for achieving sustainability, particularly in China rice paddy fields.</div></div><div><h3>Objective</h3><div>In this study, we first acquired data on GHG emissions and crop yield from rice field experiments worldwide under various irrigation and nitrogen application conditions. Subsequently, based on this dataset, we conducted modeling analysis using machine learning techniques to assess the optimization potential of irrigation and nitrogen fertilizer application in Chinese rice fields, aiming to achieve synergistic reductions in GHG emissions and improvements in crop yield under both historical and future climate scenarios.</div></div><div><h3>Results and conclusions</h3><div>The results indicated that the selected input features provided good predictive accuracy for rice yield and Global Warming Potential (GWP) in rice fields, with R² of 0.71 and 0.85, respectively. Furthermore, upon optimizing irrigation water usage in China rice fields to concurrently address GHG emissions and crop yield, the potential reductions in irrigation water were found to be −21.5 %, −29.1 %, and −13 % under past climate conditions, the SSP126 scenario, and the SSP585 scenario, respectively. After jointly optimizing both irrigation water and nitrogen fertilizer application, the reduction in irrigation water under past climate conditions, the SSP126 scenario, and the SSP585 scenario were −23 %, −31.4 %, and −16.9 % respectively. Correspondingly, the reductions in nitrogen fertilizer application were −22.9 %, −27.3 %, and −24.84 % for each scenario. Additionally, the study revealed a significant regional disparity between the northern and southern regions of China in these optimizations. Overall, southern China exhibits greater potential for irrigation water savings and rice yield increases compared to northern regions, while the potential for greenhouse gas emission reduction is higher in the north.</div></div><div><h3>Significant</h3><div>The findings provided both direction and quantifiable data support for the sustainable production of rice.</div></div>\",\"PeriodicalId\":12143,\"journal\":{\"name\":\"Field Crops Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Field Crops Research\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378429024003745\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Field Crops Research","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378429024003745","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

摘要

背景灌溉和施肥是确保高产的两种最常见的做法,它们影响着几乎所有的土壤生物地球化学过程,包括温室气体(GHG)排放。如何平衡农田灌溉和氮肥施用,实现温室气体排放和作物产量的协同增效,是实现可持续发展的内在要求,尤其是在中国的水稻田中。结果与结论结果表明,所选输入特征对水稻产量和全球变暖潜势(GWP)具有良好的预测精度,R² 分别为 0.71 和 0.85。此外,通过优化中国稻田的灌溉用水,同时解决温室气体排放和作物产量问题,发现在过去气候条件、SSP126 情景和 SSP585 情景下,灌溉用水的潜在减排量分别为 -21.5%、-29.1% 和 -13%。在对灌溉用水和氮肥施用量进行联合优化后,过去气候条件、SSP126 情景和 SSP585 情景下的灌溉用水减少量分别为-23 %、-31.4 %和-16.9 %。相应地,每种情景下氮肥施用量的减少量分别为-22.9%、-27.3%和-24.84%。此外,研究还发现,在这些优化方案中,中国南北地区之间存在显著的地区差异。总体而言,与北方地区相比,中国南方地区在节约灌溉用水和提高水稻产量方面具有更大的潜力,而北方地区在减少温室气体排放方面具有更大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimizing water and nitrogen management to balance greenhouse gas emissions and yield in Chinese rice paddies

Context

Irrigation and fertilizer applications, the two most common practices to ensure high yield, affect almost all soil biogeochemical processes including greenhouse gas (GHG) emissions. How to balance irrigation and nitrogen application in farmland to synergize GHG emissions and crop yield is an inherent requirement for achieving sustainability, particularly in China rice paddy fields.

Objective

In this study, we first acquired data on GHG emissions and crop yield from rice field experiments worldwide under various irrigation and nitrogen application conditions. Subsequently, based on this dataset, we conducted modeling analysis using machine learning techniques to assess the optimization potential of irrigation and nitrogen fertilizer application in Chinese rice fields, aiming to achieve synergistic reductions in GHG emissions and improvements in crop yield under both historical and future climate scenarios.

Results and conclusions

The results indicated that the selected input features provided good predictive accuracy for rice yield and Global Warming Potential (GWP) in rice fields, with R² of 0.71 and 0.85, respectively. Furthermore, upon optimizing irrigation water usage in China rice fields to concurrently address GHG emissions and crop yield, the potential reductions in irrigation water were found to be −21.5 %, −29.1 %, and −13 % under past climate conditions, the SSP126 scenario, and the SSP585 scenario, respectively. After jointly optimizing both irrigation water and nitrogen fertilizer application, the reduction in irrigation water under past climate conditions, the SSP126 scenario, and the SSP585 scenario were −23 %, −31.4 %, and −16.9 % respectively. Correspondingly, the reductions in nitrogen fertilizer application were −22.9 %, −27.3 %, and −24.84 % for each scenario. Additionally, the study revealed a significant regional disparity between the northern and southern regions of China in these optimizations. Overall, southern China exhibits greater potential for irrigation water savings and rice yield increases compared to northern regions, while the potential for greenhouse gas emission reduction is higher in the north.

Significant

The findings provided both direction and quantifiable data support for the sustainable production of rice.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Field Crops Research
Field Crops Research 农林科学-农艺学
CiteScore
9.60
自引率
12.10%
发文量
307
审稿时长
46 days
期刊介绍: Field Crops Research is an international journal publishing scientific articles on: √ experimental and modelling research at field, farm and landscape levels on temperate and tropical crops and cropping systems, with a focus on crop ecology and physiology, agronomy, and plant genetics and breeding.
期刊最新文献
The split injection of water-soluble fertilizers effectively reduces N2O, CH4 and NH3 emissions while simultaneously improving rice yield and harvest index Estimating wheat partitioning coefficient using remote sensing and its coupling with a crop growth model Effect of sulfur and potassium foliar applications on wheat grain protein quality Legume and maize intercropping enhances subsequent oilseed rape productivity and stability under reduced nitrogen input Biochar addition mitigates asymmetric competition of water and increases yield advantages of maize–alfalfa strip intercropping systems in a semiarid region on the Loess Plateau
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1