使用基于强化学习的遗传算法解决电子商务中的绿色逆向物流问题

IF 5.9 3区 管理学 Q1 BUSINESS Electronic Commerce Research and Applications Pub Date : 2024-10-18 DOI:10.1016/j.elerap.2024.101455
Min-Yang Li, Fang-Yu Shih
{"title":"使用基于强化学习的遗传算法解决电子商务中的绿色逆向物流问题","authors":"Min-Yang Li,&nbsp;Fang-Yu Shih","doi":"10.1016/j.elerap.2024.101455","DOIUrl":null,"url":null,"abstract":"<div><div>This study explores the two-phase green reverse logistics problem with time windows and a focus on perishable items that pose a significant challenge in the management of returned goods in e-commerce. We proposed a mixed integer programming model that considers carbon emissions, fuel consumption costs, facility establishment and operating costs, among other factors.</div><div>We incorporated reinforcement learning concepts to adjust parameters in traditional genetic algorithms, which often have inflexible parameter settings, thereby enhancing both the efficiency and quality of the solutions. The Q-learning algorithm was adopted as the learning method, and various action combinations of reinforcement learning were explored and compared. We further evaluated the performance of different genetic algorithm variations. The results indicate that the proposed algorithm provides high-quality solutions, and that effective parameter configuration significantly impacts the algorithm’s overall performance.</div></div>","PeriodicalId":50541,"journal":{"name":"Electronic Commerce Research and Applications","volume":"68 ","pages":"Article 101455"},"PeriodicalIF":5.9000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solving the green reverse logistics problem in e-commerce using a reinforcement learning based genetic algorithm\",\"authors\":\"Min-Yang Li,&nbsp;Fang-Yu Shih\",\"doi\":\"10.1016/j.elerap.2024.101455\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study explores the two-phase green reverse logistics problem with time windows and a focus on perishable items that pose a significant challenge in the management of returned goods in e-commerce. We proposed a mixed integer programming model that considers carbon emissions, fuel consumption costs, facility establishment and operating costs, among other factors.</div><div>We incorporated reinforcement learning concepts to adjust parameters in traditional genetic algorithms, which often have inflexible parameter settings, thereby enhancing both the efficiency and quality of the solutions. The Q-learning algorithm was adopted as the learning method, and various action combinations of reinforcement learning were explored and compared. We further evaluated the performance of different genetic algorithm variations. The results indicate that the proposed algorithm provides high-quality solutions, and that effective parameter configuration significantly impacts the algorithm’s overall performance.</div></div>\",\"PeriodicalId\":50541,\"journal\":{\"name\":\"Electronic Commerce Research and Applications\",\"volume\":\"68 \",\"pages\":\"Article 101455\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Commerce Research and Applications\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1567422324001005\",\"RegionNum\":3,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BUSINESS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Commerce Research and Applications","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567422324001005","RegionNum":3,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了具有时间窗口的两阶段绿色逆向物流问题,重点关注易腐物品,这给电子商务中的退货管理带来了巨大挑战。我们提出了一个混合整数编程模型,该模型考虑了碳排放、燃料消耗成本、设施建立和运营成本等因素。我们在传统遗传算法中引入了强化学习的概念来调整参数,因为传统遗传算法的参数设置往往不够灵活,从而提高了解决方案的效率和质量。我们采用 Q-learning 算法作为学习方法,并探索和比较了强化学习的各种行动组合。我们进一步评估了不同遗传算法变体的性能。结果表明,所提出的算法能提供高质量的解决方案,有效的参数配置对算法的整体性能有显著影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Solving the green reverse logistics problem in e-commerce using a reinforcement learning based genetic algorithm
This study explores the two-phase green reverse logistics problem with time windows and a focus on perishable items that pose a significant challenge in the management of returned goods in e-commerce. We proposed a mixed integer programming model that considers carbon emissions, fuel consumption costs, facility establishment and operating costs, among other factors.
We incorporated reinforcement learning concepts to adjust parameters in traditional genetic algorithms, which often have inflexible parameter settings, thereby enhancing both the efficiency and quality of the solutions. The Q-learning algorithm was adopted as the learning method, and various action combinations of reinforcement learning were explored and compared. We further evaluated the performance of different genetic algorithm variations. The results indicate that the proposed algorithm provides high-quality solutions, and that effective parameter configuration significantly impacts the algorithm’s overall performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electronic Commerce Research and Applications
Electronic Commerce Research and Applications 工程技术-计算机:跨学科应用
CiteScore
10.10
自引率
8.30%
发文量
97
审稿时长
63 days
期刊介绍: Electronic Commerce Research and Applications aims to create and disseminate enduring knowledge for the fast-changing e-commerce environment. A major dilemma in e-commerce research is how to achieve a balance between the currency and the life span of knowledge. Electronic Commerce Research and Applications will contribute to the establishment of a research community to create the knowledge, technology, theory, and applications for the development of electronic commerce. This is targeted at the intersection of technological potential and business aims.
期刊最新文献
Who should provide a trade-in service under the online agency-selling mode? Home is best: Review source and cross-border online shopping Sustaining superior visibility within digital platforms through inside and outside competitive action repertoires The effects of physician’s brand positioning on diagnostic dispensing continuity and cross-provincial healthcare flow: Evidence from an online traditional Chinese medicine community Physical stores versus physical showrooms: Channel structures of online retailers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1