Yulong He , Yanjiao He , Jiapeng Sun , Xin Li , Ming-Hui Lu , Yan-Feng Chen
{"title":"打破三维打印复杂晶格启发多孔管在轴向压缩下的机械性能权衡","authors":"Yulong He , Yanjiao He , Jiapeng Sun , Xin Li , Ming-Hui Lu , Yan-Feng Chen","doi":"10.1016/j.compscitech.2024.110920","DOIUrl":null,"url":null,"abstract":"<div><div>It is a long-standing challenge to balance the structural load capacity and toughness in the design of lightweight multi-cell tubes. To tackle this challenge, we provide two kinds of complex lattice-inspired composite multi-cell tubes. The composite multi-cell tubes consist of inner polylactic acid (PLA) complex lattice-inspired multi-cell tubes and outside aluminum tubes. The energy absorption capacity of these multi-cell tubes was evaluated under quasi-static axial compression. The effect of cross-sectional topology and thermal exposure were considered in the experiment. The results show that the integration of PLA tubes within aluminum tubes significantly enhances their energy absorption performance, effectively addressing the limitations posed by the low fracture strain of PLA. The synergistic effect between the aluminum and PLA tubes mitigates the fracture instability and distributes the load more evenly, resulting in improved specific energy absorption (SEA) and mean crushing force (MCF) up to 103.32 % and 184.38 %, respectively. In these composite tubes, a global self-similar layout can markedly enhance its energy absorption. However, their mechanical properties decrease significantly at 323K compared to room temperature. In contrast, local self-similar composite multi-cell tubes exhibited relatively less reduction in mean crushing force due to the weaker synergistic effects. Overall, this research provides a novel approach to enhancing the mechanical performance of PLA tubes, paving the way for their application in engineering fields requiring lightweight and high-strength structures.</div></div>","PeriodicalId":283,"journal":{"name":"Composites Science and Technology","volume":"258 ","pages":"Article 110920"},"PeriodicalIF":8.3000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Breaking mechanical performance trade-off in 3D-printed complex lattice-inspired multi-cell tubes under axial compression\",\"authors\":\"Yulong He , Yanjiao He , Jiapeng Sun , Xin Li , Ming-Hui Lu , Yan-Feng Chen\",\"doi\":\"10.1016/j.compscitech.2024.110920\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>It is a long-standing challenge to balance the structural load capacity and toughness in the design of lightweight multi-cell tubes. To tackle this challenge, we provide two kinds of complex lattice-inspired composite multi-cell tubes. The composite multi-cell tubes consist of inner polylactic acid (PLA) complex lattice-inspired multi-cell tubes and outside aluminum tubes. The energy absorption capacity of these multi-cell tubes was evaluated under quasi-static axial compression. The effect of cross-sectional topology and thermal exposure were considered in the experiment. The results show that the integration of PLA tubes within aluminum tubes significantly enhances their energy absorption performance, effectively addressing the limitations posed by the low fracture strain of PLA. The synergistic effect between the aluminum and PLA tubes mitigates the fracture instability and distributes the load more evenly, resulting in improved specific energy absorption (SEA) and mean crushing force (MCF) up to 103.32 % and 184.38 %, respectively. In these composite tubes, a global self-similar layout can markedly enhance its energy absorption. However, their mechanical properties decrease significantly at 323K compared to room temperature. In contrast, local self-similar composite multi-cell tubes exhibited relatively less reduction in mean crushing force due to the weaker synergistic effects. Overall, this research provides a novel approach to enhancing the mechanical performance of PLA tubes, paving the way for their application in engineering fields requiring lightweight and high-strength structures.</div></div>\",\"PeriodicalId\":283,\"journal\":{\"name\":\"Composites Science and Technology\",\"volume\":\"258 \",\"pages\":\"Article 110920\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Composites Science and Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0266353824004901\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266353824004901","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
Breaking mechanical performance trade-off in 3D-printed complex lattice-inspired multi-cell tubes under axial compression
It is a long-standing challenge to balance the structural load capacity and toughness in the design of lightweight multi-cell tubes. To tackle this challenge, we provide two kinds of complex lattice-inspired composite multi-cell tubes. The composite multi-cell tubes consist of inner polylactic acid (PLA) complex lattice-inspired multi-cell tubes and outside aluminum tubes. The energy absorption capacity of these multi-cell tubes was evaluated under quasi-static axial compression. The effect of cross-sectional topology and thermal exposure were considered in the experiment. The results show that the integration of PLA tubes within aluminum tubes significantly enhances their energy absorption performance, effectively addressing the limitations posed by the low fracture strain of PLA. The synergistic effect between the aluminum and PLA tubes mitigates the fracture instability and distributes the load more evenly, resulting in improved specific energy absorption (SEA) and mean crushing force (MCF) up to 103.32 % and 184.38 %, respectively. In these composite tubes, a global self-similar layout can markedly enhance its energy absorption. However, their mechanical properties decrease significantly at 323K compared to room temperature. In contrast, local self-similar composite multi-cell tubes exhibited relatively less reduction in mean crushing force due to the weaker synergistic effects. Overall, this research provides a novel approach to enhancing the mechanical performance of PLA tubes, paving the way for their application in engineering fields requiring lightweight and high-strength structures.
期刊介绍:
Composites Science and Technology publishes refereed original articles on the fundamental and applied science of engineering composites. The focus of this journal is on polymeric matrix composites with reinforcements/fillers ranging from nano- to macro-scale. CSTE encourages manuscripts reporting unique, innovative contributions to the physics, chemistry, materials science and applied mechanics aspects of advanced composites.
Besides traditional fiber reinforced composites, novel composites with significant potential for engineering applications are encouraged.