{"title":"为复杂的非线性水文系统设计气候变化评估时的考虑因素","authors":"Fiona Johnson , Clare Stephens , Martin Krogh","doi":"10.1016/j.jhydrol.2024.132182","DOIUrl":null,"url":null,"abstract":"<div><div>Bias correction of climate model simulations is vital to allow climate change impacts to be assessed for water resources systems. However, there has been limited research to date on the implications of system non-linearity on bias correction approaches. Here we bias correct regional climate model simulations of precipitation and evapotranspiration and use the output to force hydrological and water balance models of five small, interconnected lakes located south west of Sydney. We show that substantial, non-linear storage within the lakes amplifies biases that are not evident when the climate forcing or even the hydrological model simulations are evaluated using daily distributions of the climate variables and streamflow.</div><div>The non-linearity in the stage-storage relationships of the lakes means that each lake responds differently to the same climate forcings. For example, ensemble mean projections for one lake suggest increases in water level across the full distribution of lake levels, whilst other lakes are projected to have decreasing water levels up to the median of the distribution, but increases during wetter conditions. These differences are explained by the varying influence of potential evapotranspiration increases depending on the surface area of the lakes at different depths. Using bottom up climate change assessments, we further explore these non-linear responses of the lakes to different climate forcings. We show that bottom up climate change assessments can provide information on the relative role of potential evapotranspiration changes compared to precipitation changes, providing more guidance to ecosystem managers than just using bias corrected climate model simulations alone. The paper discusses opportunities for future work to improve representation of climate attributes important for storage dominated water resource and natural ecosystems.</div></div>","PeriodicalId":362,"journal":{"name":"Journal of Hydrology","volume":"645 ","pages":"Article 132182"},"PeriodicalIF":5.9000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Considerations in designing climate change assessments for complex, non-linear hydrological systems\",\"authors\":\"Fiona Johnson , Clare Stephens , Martin Krogh\",\"doi\":\"10.1016/j.jhydrol.2024.132182\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Bias correction of climate model simulations is vital to allow climate change impacts to be assessed for water resources systems. However, there has been limited research to date on the implications of system non-linearity on bias correction approaches. Here we bias correct regional climate model simulations of precipitation and evapotranspiration and use the output to force hydrological and water balance models of five small, interconnected lakes located south west of Sydney. We show that substantial, non-linear storage within the lakes amplifies biases that are not evident when the climate forcing or even the hydrological model simulations are evaluated using daily distributions of the climate variables and streamflow.</div><div>The non-linearity in the stage-storage relationships of the lakes means that each lake responds differently to the same climate forcings. For example, ensemble mean projections for one lake suggest increases in water level across the full distribution of lake levels, whilst other lakes are projected to have decreasing water levels up to the median of the distribution, but increases during wetter conditions. These differences are explained by the varying influence of potential evapotranspiration increases depending on the surface area of the lakes at different depths. Using bottom up climate change assessments, we further explore these non-linear responses of the lakes to different climate forcings. We show that bottom up climate change assessments can provide information on the relative role of potential evapotranspiration changes compared to precipitation changes, providing more guidance to ecosystem managers than just using bias corrected climate model simulations alone. The paper discusses opportunities for future work to improve representation of climate attributes important for storage dominated water resource and natural ecosystems.</div></div>\",\"PeriodicalId\":362,\"journal\":{\"name\":\"Journal of Hydrology\",\"volume\":\"645 \",\"pages\":\"Article 132182\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hydrology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022169424015786\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydrology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022169424015786","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Considerations in designing climate change assessments for complex, non-linear hydrological systems
Bias correction of climate model simulations is vital to allow climate change impacts to be assessed for water resources systems. However, there has been limited research to date on the implications of system non-linearity on bias correction approaches. Here we bias correct regional climate model simulations of precipitation and evapotranspiration and use the output to force hydrological and water balance models of five small, interconnected lakes located south west of Sydney. We show that substantial, non-linear storage within the lakes amplifies biases that are not evident when the climate forcing or even the hydrological model simulations are evaluated using daily distributions of the climate variables and streamflow.
The non-linearity in the stage-storage relationships of the lakes means that each lake responds differently to the same climate forcings. For example, ensemble mean projections for one lake suggest increases in water level across the full distribution of lake levels, whilst other lakes are projected to have decreasing water levels up to the median of the distribution, but increases during wetter conditions. These differences are explained by the varying influence of potential evapotranspiration increases depending on the surface area of the lakes at different depths. Using bottom up climate change assessments, we further explore these non-linear responses of the lakes to different climate forcings. We show that bottom up climate change assessments can provide information on the relative role of potential evapotranspiration changes compared to precipitation changes, providing more guidance to ecosystem managers than just using bias corrected climate model simulations alone. The paper discusses opportunities for future work to improve representation of climate attributes important for storage dominated water resource and natural ecosystems.
期刊介绍:
The Journal of Hydrology publishes original research papers and comprehensive reviews in all the subfields of the hydrological sciences including water based management and policy issues that impact on economics and society. These comprise, but are not limited to the physical, chemical, biogeochemical, stochastic and systems aspects of surface and groundwater hydrology, hydrometeorology and hydrogeology. Relevant topics incorporating the insights and methodologies of disciplines such as climatology, water resource systems, hydraulics, agrohydrology, geomorphology, soil science, instrumentation and remote sensing, civil and environmental engineering are included. Social science perspectives on hydrological problems such as resource and ecological economics, environmental sociology, psychology and behavioural science, management and policy analysis are also invited. Multi-and interdisciplinary analyses of hydrological problems are within scope. The science published in the Journal of Hydrology is relevant to catchment scales rather than exclusively to a local scale or site.