Marian-Emanuel Ionascu , Marius Marcu , Razvan Bogdan , Marius Darie
{"title":"使用 Airify 校准 NO、SO2 和 PM:用于空气质量监测的低成本传感器集群","authors":"Marian-Emanuel Ionascu , Marius Marcu , Razvan Bogdan , Marius Darie","doi":"10.1016/j.atmosenv.2024.120841","DOIUrl":null,"url":null,"abstract":"<div><div>During the past decade, substantial efforts have been dedicated to advancing cost-effective sensor platforms for air quality monitoring. Calibration is a crucial step in ensuring that the data quality of low-cost air monitoring systems meets established standards. Recent research has extensively evaluated low-cost air monitoring platforms against the data quality objectives set by the European Directive. This paper introduces a novel calibration model for low-cost air quality sensors, significantly improving the accuracy of the measurement of nitric oxide (NO), sulfur dioxide (SO<sub>2</sub>), and particulate matter (PM<sub>1</sub>, PM<sub>2.5</sub>, and PM<sub>10</sub>), while promoting accessibility and adaptability in environmental monitoring technologies. This study extends the evaluation of a developed platform capable of integrating a diverse array of sensors to measure up to 12 parameters. Our proposed models demonstrate a significant improvement, achieving a 60% better accuracy for SO<sub>2</sub>. Additionally, these models deliver similar results for PM<sub>x</sub> and NO or exceed those of state of the art research. The calibration methodology meets the requirements of the Data Quality Objectives (DQO) for all monitored parameters and also achieves indicative levels for PM parameters.</div></div>","PeriodicalId":250,"journal":{"name":"Atmospheric Environment","volume":"339 ","pages":"Article 120841"},"PeriodicalIF":4.2000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Calibration of NO, SO2, and PM using Airify: A low-cost sensor cluster for air quality monitoring\",\"authors\":\"Marian-Emanuel Ionascu , Marius Marcu , Razvan Bogdan , Marius Darie\",\"doi\":\"10.1016/j.atmosenv.2024.120841\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>During the past decade, substantial efforts have been dedicated to advancing cost-effective sensor platforms for air quality monitoring. Calibration is a crucial step in ensuring that the data quality of low-cost air monitoring systems meets established standards. Recent research has extensively evaluated low-cost air monitoring platforms against the data quality objectives set by the European Directive. This paper introduces a novel calibration model for low-cost air quality sensors, significantly improving the accuracy of the measurement of nitric oxide (NO), sulfur dioxide (SO<sub>2</sub>), and particulate matter (PM<sub>1</sub>, PM<sub>2.5</sub>, and PM<sub>10</sub>), while promoting accessibility and adaptability in environmental monitoring technologies. This study extends the evaluation of a developed platform capable of integrating a diverse array of sensors to measure up to 12 parameters. Our proposed models demonstrate a significant improvement, achieving a 60% better accuracy for SO<sub>2</sub>. Additionally, these models deliver similar results for PM<sub>x</sub> and NO or exceed those of state of the art research. The calibration methodology meets the requirements of the Data Quality Objectives (DQO) for all monitored parameters and also achieves indicative levels for PM parameters.</div></div>\",\"PeriodicalId\":250,\"journal\":{\"name\":\"Atmospheric Environment\",\"volume\":\"339 \",\"pages\":\"Article 120841\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atmospheric Environment\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1352231024005168\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Environment","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1352231024005168","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Calibration of NO, SO2, and PM using Airify: A low-cost sensor cluster for air quality monitoring
During the past decade, substantial efforts have been dedicated to advancing cost-effective sensor platforms for air quality monitoring. Calibration is a crucial step in ensuring that the data quality of low-cost air monitoring systems meets established standards. Recent research has extensively evaluated low-cost air monitoring platforms against the data quality objectives set by the European Directive. This paper introduces a novel calibration model for low-cost air quality sensors, significantly improving the accuracy of the measurement of nitric oxide (NO), sulfur dioxide (SO2), and particulate matter (PM1, PM2.5, and PM10), while promoting accessibility and adaptability in environmental monitoring technologies. This study extends the evaluation of a developed platform capable of integrating a diverse array of sensors to measure up to 12 parameters. Our proposed models demonstrate a significant improvement, achieving a 60% better accuracy for SO2. Additionally, these models deliver similar results for PMx and NO or exceed those of state of the art research. The calibration methodology meets the requirements of the Data Quality Objectives (DQO) for all monitored parameters and also achieves indicative levels for PM parameters.
期刊介绍:
Atmospheric Environment has an open access mirror journal Atmospheric Environment: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review.
Atmospheric Environment is the international journal for scientists in different disciplines related to atmospheric composition and its impacts. The journal publishes scientific articles with atmospheric relevance of emissions and depositions of gaseous and particulate compounds, chemical processes and physical effects in the atmosphere, as well as impacts of the changing atmospheric composition on human health, air quality, climate change, and ecosystems.