通过拉格朗日数据同化与方向算子拆分对各向异性树枝状晶体生长进行精确并行模拟

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED Computers & Mathematics with Applications Pub Date : 2024-10-22 DOI:10.1016/j.camwa.2024.10.020
Fenglian Zheng , Yan Wang , Xufeng Xiao
{"title":"通过拉格朗日数据同化与方向算子拆分对各向异性树枝状晶体生长进行精确并行模拟","authors":"Fenglian Zheng ,&nbsp;Yan Wang ,&nbsp;Xufeng Xiao","doi":"10.1016/j.camwa.2024.10.020","DOIUrl":null,"url":null,"abstract":"<div><div>Dendritic crystal growth is a prevalent natural phenomenon that generates a crystalline structure resembling a tree during a phase transition. In practical computations, inaccuracies in model parameters and initial conditions can introduce observation errors, even leading to inaccurate results. To enhance the precision and efficiency of the numerical simulation, the data assimilation method with parallel simulation are considered in this study. Firstly, based on the phase-field dendritic crystal growth model, a Lagrangian data assimilation method, which adds Lagrange multiplier terms into the phase-field partial differential equations (PDEs), is presented to integrate the observed data of physical information to modify the numerical solution, thereby improving simulation accuracy. Secondly, to achieve efficient data assimilation, a parallel directional operator splitting method is presented to solve the modified data assimilation PDEs. Thirdly, in the section of numerical experiments, we investigate the validity of the method and assess the impact of various factors such as the Lagrange multiplier parameter, spatio-temporal sampling rate and parameter perturbation ratio on the effectiveness of data assimilation. The evaluation is conducted for two distinct problem categories: initial observation errors and model parameter errors. Experimental results demonstrate that our method can effectively assimilate experimental observations in simulations, thereby enhancing more accurate dendritic crystal growth processes.</div></div>","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Accurate and parallel simulation of the anisotropic dendrite crystal growth by Lagrangian data assimilation with directional operator splitting\",\"authors\":\"Fenglian Zheng ,&nbsp;Yan Wang ,&nbsp;Xufeng Xiao\",\"doi\":\"10.1016/j.camwa.2024.10.020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Dendritic crystal growth is a prevalent natural phenomenon that generates a crystalline structure resembling a tree during a phase transition. In practical computations, inaccuracies in model parameters and initial conditions can introduce observation errors, even leading to inaccurate results. To enhance the precision and efficiency of the numerical simulation, the data assimilation method with parallel simulation are considered in this study. Firstly, based on the phase-field dendritic crystal growth model, a Lagrangian data assimilation method, which adds Lagrange multiplier terms into the phase-field partial differential equations (PDEs), is presented to integrate the observed data of physical information to modify the numerical solution, thereby improving simulation accuracy. Secondly, to achieve efficient data assimilation, a parallel directional operator splitting method is presented to solve the modified data assimilation PDEs. Thirdly, in the section of numerical experiments, we investigate the validity of the method and assess the impact of various factors such as the Lagrange multiplier parameter, spatio-temporal sampling rate and parameter perturbation ratio on the effectiveness of data assimilation. The evaluation is conducted for two distinct problem categories: initial observation errors and model parameter errors. Experimental results demonstrate that our method can effectively assimilate experimental observations in simulations, thereby enhancing more accurate dendritic crystal growth processes.</div></div>\",\"PeriodicalId\":55218,\"journal\":{\"name\":\"Computers & Mathematics with Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Mathematics with Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0898122124004644\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898122124004644","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

树枝状晶体生长是一种普遍的自然现象,在相变过程中会产生类似树状的晶体结构。在实际计算中,模型参数和初始条件的不准确会带来观测误差,甚至导致结果不准确。为了提高数值模拟的精度和效率,本研究考虑采用数据同化方法进行并行模拟。首先,基于相场树枝状晶体生长模型,提出一种拉格朗日数据同化方法,在相场偏微分方程(PDEs)中加入拉格朗日乘数项,以整合物理信息的观测数据来修改数值解,从而提高模拟精度。其次,为了实现高效的数据同化,提出了一种并行定向算子拆分方法来求解修改后的数据同化偏微分方程。第三,在数值实验部分,我们研究了该方法的有效性,并评估了拉格朗日乘数参数、时空采样率和参数扰动比等各种因素对数据同化效果的影响。评估针对两个不同的问题类别:初始观测误差和模型参数误差。实验结果表明,我们的方法可以在模拟中有效地同化实验观测数据,从而提高树枝状晶体生长过程的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Accurate and parallel simulation of the anisotropic dendrite crystal growth by Lagrangian data assimilation with directional operator splitting
Dendritic crystal growth is a prevalent natural phenomenon that generates a crystalline structure resembling a tree during a phase transition. In practical computations, inaccuracies in model parameters and initial conditions can introduce observation errors, even leading to inaccurate results. To enhance the precision and efficiency of the numerical simulation, the data assimilation method with parallel simulation are considered in this study. Firstly, based on the phase-field dendritic crystal growth model, a Lagrangian data assimilation method, which adds Lagrange multiplier terms into the phase-field partial differential equations (PDEs), is presented to integrate the observed data of physical information to modify the numerical solution, thereby improving simulation accuracy. Secondly, to achieve efficient data assimilation, a parallel directional operator splitting method is presented to solve the modified data assimilation PDEs. Thirdly, in the section of numerical experiments, we investigate the validity of the method and assess the impact of various factors such as the Lagrange multiplier parameter, spatio-temporal sampling rate and parameter perturbation ratio on the effectiveness of data assimilation. The evaluation is conducted for two distinct problem categories: initial observation errors and model parameter errors. Experimental results demonstrate that our method can effectively assimilate experimental observations in simulations, thereby enhancing more accurate dendritic crystal growth processes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Mathematics with Applications
Computers & Mathematics with Applications 工程技术-计算机:跨学科应用
CiteScore
5.10
自引率
10.30%
发文量
396
审稿时长
9.9 weeks
期刊介绍: Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).
期刊最新文献
Numerical study of magnesium dendrite microstructure under convection: Change of dendrite symmetry Topology optimization design of labyrinth seal-type devices considering subsonic compressible turbulent flow conditions An implementation of hp-FEM for the fractional Laplacian Modular parametric PGD enabling online solution of partial differential equations An implicit GNN solver for Poisson-like problems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1