{"title":"基于本体的地下管线隧道多灾害耦合事故模拟与推演系统--地震诱发灾害链案例研究","authors":"Yin Gu, Chenyang Wang, Yi Liu, Rui Zhou","doi":"10.1016/j.ress.2024.110559","DOIUrl":null,"url":null,"abstract":"<div><div>Integrated underground utility tunnels are increasingly crucial in modern cities, addressing the pressing need for sustainable urban development. However, their extensive centralization amplifies both the complexity and scale of potential risks. When a utility tunnel accident occurs, it is possible to trigger a sequence of cascading events, thereby resulting a complex coupling accident. While previous research has predominantly focused on individual hazards, understanding multi-hazard coupling accidents presents significant challenges and lacks effective methodologies. In this paper, we propose an integrated system utilizing ontology technology and knowledge base construction for simulating and deducing coupling accidents in urban utility tunnels. Specifically, by extending ontology techniques to emergency decision-making and adopting the triangular framework for public safety, we establish a multidimensional information ontology for utility tunnel emergencies. Furthermore, a knowledge base for typical coupling accident evolution paths is established based on the event chain and contingency plan chain theory. Through integration with a multi-hazard accident basic database that serves the conditional, investigative and decision-making node within the evolution path, the simulation and deduction system is formulated, boasting a user-friendly visual interface, interactive functionality, and seamless applicability for widespread adoption. A case study demonstrates the system ability to support multiple paths and unified mapping deduction, offering practical emergency decision-making suggestions to mitigate cascading events in urban utility tunnels.</div></div>","PeriodicalId":54500,"journal":{"name":"Reliability Engineering & System Safety","volume":"253 ","pages":"Article 110559"},"PeriodicalIF":9.4000,"publicationDate":"2024-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An ontology-based multi-hazard coupling accidents simulation and deduction system for underground utility tunnel - A case study of earthquake-induced disaster chain\",\"authors\":\"Yin Gu, Chenyang Wang, Yi Liu, Rui Zhou\",\"doi\":\"10.1016/j.ress.2024.110559\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Integrated underground utility tunnels are increasingly crucial in modern cities, addressing the pressing need for sustainable urban development. However, their extensive centralization amplifies both the complexity and scale of potential risks. When a utility tunnel accident occurs, it is possible to trigger a sequence of cascading events, thereby resulting a complex coupling accident. While previous research has predominantly focused on individual hazards, understanding multi-hazard coupling accidents presents significant challenges and lacks effective methodologies. In this paper, we propose an integrated system utilizing ontology technology and knowledge base construction for simulating and deducing coupling accidents in urban utility tunnels. Specifically, by extending ontology techniques to emergency decision-making and adopting the triangular framework for public safety, we establish a multidimensional information ontology for utility tunnel emergencies. Furthermore, a knowledge base for typical coupling accident evolution paths is established based on the event chain and contingency plan chain theory. Through integration with a multi-hazard accident basic database that serves the conditional, investigative and decision-making node within the evolution path, the simulation and deduction system is formulated, boasting a user-friendly visual interface, interactive functionality, and seamless applicability for widespread adoption. A case study demonstrates the system ability to support multiple paths and unified mapping deduction, offering practical emergency decision-making suggestions to mitigate cascading events in urban utility tunnels.</div></div>\",\"PeriodicalId\":54500,\"journal\":{\"name\":\"Reliability Engineering & System Safety\",\"volume\":\"253 \",\"pages\":\"Article 110559\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reliability Engineering & System Safety\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0951832024006318\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reliability Engineering & System Safety","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0951832024006318","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
An ontology-based multi-hazard coupling accidents simulation and deduction system for underground utility tunnel - A case study of earthquake-induced disaster chain
Integrated underground utility tunnels are increasingly crucial in modern cities, addressing the pressing need for sustainable urban development. However, their extensive centralization amplifies both the complexity and scale of potential risks. When a utility tunnel accident occurs, it is possible to trigger a sequence of cascading events, thereby resulting a complex coupling accident. While previous research has predominantly focused on individual hazards, understanding multi-hazard coupling accidents presents significant challenges and lacks effective methodologies. In this paper, we propose an integrated system utilizing ontology technology and knowledge base construction for simulating and deducing coupling accidents in urban utility tunnels. Specifically, by extending ontology techniques to emergency decision-making and adopting the triangular framework for public safety, we establish a multidimensional information ontology for utility tunnel emergencies. Furthermore, a knowledge base for typical coupling accident evolution paths is established based on the event chain and contingency plan chain theory. Through integration with a multi-hazard accident basic database that serves the conditional, investigative and decision-making node within the evolution path, the simulation and deduction system is formulated, boasting a user-friendly visual interface, interactive functionality, and seamless applicability for widespread adoption. A case study demonstrates the system ability to support multiple paths and unified mapping deduction, offering practical emergency decision-making suggestions to mitigate cascading events in urban utility tunnels.
期刊介绍:
Elsevier publishes Reliability Engineering & System Safety in association with the European Safety and Reliability Association and the Safety Engineering and Risk Analysis Division. The international journal is devoted to developing and applying methods to enhance the safety and reliability of complex technological systems, like nuclear power plants, chemical plants, hazardous waste facilities, space systems, offshore and maritime systems, transportation systems, constructed infrastructure, and manufacturing plants. The journal normally publishes only articles that involve the analysis of substantive problems related to the reliability of complex systems or present techniques and/or theoretical results that have a discernable relationship to the solution of such problems. An important aim is to balance academic material and practical applications.