活性油滴推进的分子建模:耗散粒子动力学模拟的启示

IF 2.8 3区 化学 Q3 CHEMISTRY, PHYSICAL Chemical Physics Letters Pub Date : 2024-10-11 DOI:10.1016/j.cplett.2024.141680
Ken Sasaki , Yuuki Ishiwatari , Kazuki Ueno , Tomoya Kojima , Taisuke Banno , Noriyoshi Arai
{"title":"活性油滴推进的分子建模:耗散粒子动力学模拟的启示","authors":"Ken Sasaki ,&nbsp;Yuuki Ishiwatari ,&nbsp;Kazuki Ueno ,&nbsp;Tomoya Kojima ,&nbsp;Taisuke Banno ,&nbsp;Noriyoshi Arai","doi":"10.1016/j.cplett.2024.141680","DOIUrl":null,"url":null,"abstract":"<div><div>This study employed dissipative particle dynamics (DPD) simulations to investigate the self-propelled motion of oil droplets in water–oil–surfactant systems. It is the first attempt to replicate self-propulsion models of oil droplets at the molecular level, contrasting previous simulations focused on Brownian motion and hydrodynamic behaviour of colloidal particles. The DPD model reproduced droplet propulsion and visualised internal Marangoni flow, showing that larger droplet radii and greater interfacial tension differences increase propulsion speeds. Additionally, surfactants with stronger oil–oil repulsion enhanced propulsion speed, suggesting that surfactant-induced local structures are crucial for the self-propulsion mechanism.</div></div>","PeriodicalId":273,"journal":{"name":"Chemical Physics Letters","volume":"857 ","pages":"Article 141680"},"PeriodicalIF":2.8000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecular modelling of active oil droplet propulsion: Insights from dissipative particle dynamics simulation\",\"authors\":\"Ken Sasaki ,&nbsp;Yuuki Ishiwatari ,&nbsp;Kazuki Ueno ,&nbsp;Tomoya Kojima ,&nbsp;Taisuke Banno ,&nbsp;Noriyoshi Arai\",\"doi\":\"10.1016/j.cplett.2024.141680\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study employed dissipative particle dynamics (DPD) simulations to investigate the self-propelled motion of oil droplets in water–oil–surfactant systems. It is the first attempt to replicate self-propulsion models of oil droplets at the molecular level, contrasting previous simulations focused on Brownian motion and hydrodynamic behaviour of colloidal particles. The DPD model reproduced droplet propulsion and visualised internal Marangoni flow, showing that larger droplet radii and greater interfacial tension differences increase propulsion speeds. Additionally, surfactants with stronger oil–oil repulsion enhanced propulsion speed, suggesting that surfactant-induced local structures are crucial for the self-propulsion mechanism.</div></div>\",\"PeriodicalId\":273,\"journal\":{\"name\":\"Chemical Physics Letters\",\"volume\":\"857 \",\"pages\":\"Article 141680\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Physics Letters\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0009261424006225\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Physics Letters","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0009261424006225","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究采用耗散粒子动力学(DPD)模拟来研究油滴在水-油-表面活性剂系统中的自推进运动。这是首次尝试在分子水平上复制油滴的自推进模型,与之前侧重于布朗运动和胶体粒子流体力学行为的模拟形成对比。DPD 模型再现了液滴的推进力,并将内部马兰戈尼流可视化,表明液滴半径越大、界面张力差异越大,推进速度就越快。此外,具有较强油油排斥力的表面活性剂可提高推进速度,这表明表面活性剂引起的局部结构对自推进机制至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Molecular modelling of active oil droplet propulsion: Insights from dissipative particle dynamics simulation
This study employed dissipative particle dynamics (DPD) simulations to investigate the self-propelled motion of oil droplets in water–oil–surfactant systems. It is the first attempt to replicate self-propulsion models of oil droplets at the molecular level, contrasting previous simulations focused on Brownian motion and hydrodynamic behaviour of colloidal particles. The DPD model reproduced droplet propulsion and visualised internal Marangoni flow, showing that larger droplet radii and greater interfacial tension differences increase propulsion speeds. Additionally, surfactants with stronger oil–oil repulsion enhanced propulsion speed, suggesting that surfactant-induced local structures are crucial for the self-propulsion mechanism.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemical Physics Letters
Chemical Physics Letters 化学-物理:原子、分子和化学物理
CiteScore
5.70
自引率
3.60%
发文量
798
审稿时长
33 days
期刊介绍: Chemical Physics Letters has an open access mirror journal, Chemical Physics Letters: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review. Chemical Physics Letters publishes brief reports on molecules, interfaces, condensed phases, nanomaterials and nanostructures, polymers, biomolecular systems, and energy conversion and storage. Criteria for publication are quality, urgency and impact. Further, experimental results reported in the journal have direct relevance for theory, and theoretical developments or non-routine computations relate directly to experiment. Manuscripts must satisfy these criteria and should not be minor extensions of previous work.
期刊最新文献
Modulation of surface plasmon polariton lasing modes via nanowire-metal contact distance and area Adsorption behaviors and gas-sensing properties of Agn(n = 1–3)-MoSSe for gases (C2H2, C2H4, CO) in oil-filled electrical equipment DFT insights upon Pd assisted MoX2 (X = Se, S, Te) capture of air decomposition products (CO, NO2) in switch cabinet Aromaticity of charged cyclocarbon radicals (Cn± = 6–30) Directional design of interface and thermal performance for CL-20 using hollow fiber embed in desensitizer membranes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1