石墨表面在环境和水下条件下的纳米级摩擦和磨损

IF 3.1 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Carbon Trends Pub Date : 2024-10-13 DOI:10.1016/j.cartre.2024.100414
Jitendra Soni , Zhijiang Ye , Nitya Nand Gosvami
{"title":"石墨表面在环境和水下条件下的纳米级摩擦和磨损","authors":"Jitendra Soni ,&nbsp;Zhijiang Ye ,&nbsp;Nitya Nand Gosvami","doi":"10.1016/j.cartre.2024.100414","DOIUrl":null,"url":null,"abstract":"<div><div>The tribological properties of graphite are extremely sensitive to surrounding environment, which affects its longevity and friction reduction performance. This study aims to develop a comprehensive understanding of the effects of a liquid environment on interactions at the sliding interface, thereby influencing the nanoscale tribological properties of graphite surfaces. By combining atomic force microscopy experiments and molecular dynamics simulations, we conducted a comparative analysis of friction and wear behavior of graphite under two different environmental conditions: ambient (air) and underwater condition. Our investigations explored both the step edge and interior (step-free) graphite surfaces. The experimental results revealed a notable contrast in the frictional and wear behavior of graphite at nanoscale in these two environments. The interior surface exhibited a friction coefficient (COF) of approximately 0.003 and 0.006 against a diamond-coated surface in ambient and underwater conditions, respectively. Interestingly, the underwater environment not only increased friction but also significantly compromised the wear resistance of graphene layers near the graphite surface compared to the ambient environment, as evidenced in both step edge and interior step-free regions. The interior region sustained up to ∼7400 nN load in ambient condition but failed at ∼1500 nN under water. Similarly, the step edge failed at ∼375 and ∼187.5 nN in ambient and underwater conditions, respectively. Our simulations revealed that the increased friction in underwater condition is due to resistance of surrounding water molecules during tip sliding. The presence of water at tip-graphite contact interface generated substantial localized stress, leading to the initiation of wear and revealing the pronounced effect of water on the wear characteristics of graphite in underwater condition.</div></div>","PeriodicalId":52629,"journal":{"name":"Carbon Trends","volume":"17 ","pages":"Article 100414"},"PeriodicalIF":3.1000,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nanoscale friction and wear of graphite surface in ambient and underwater conditions\",\"authors\":\"Jitendra Soni ,&nbsp;Zhijiang Ye ,&nbsp;Nitya Nand Gosvami\",\"doi\":\"10.1016/j.cartre.2024.100414\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The tribological properties of graphite are extremely sensitive to surrounding environment, which affects its longevity and friction reduction performance. This study aims to develop a comprehensive understanding of the effects of a liquid environment on interactions at the sliding interface, thereby influencing the nanoscale tribological properties of graphite surfaces. By combining atomic force microscopy experiments and molecular dynamics simulations, we conducted a comparative analysis of friction and wear behavior of graphite under two different environmental conditions: ambient (air) and underwater condition. Our investigations explored both the step edge and interior (step-free) graphite surfaces. The experimental results revealed a notable contrast in the frictional and wear behavior of graphite at nanoscale in these two environments. The interior surface exhibited a friction coefficient (COF) of approximately 0.003 and 0.006 against a diamond-coated surface in ambient and underwater conditions, respectively. Interestingly, the underwater environment not only increased friction but also significantly compromised the wear resistance of graphene layers near the graphite surface compared to the ambient environment, as evidenced in both step edge and interior step-free regions. The interior region sustained up to ∼7400 nN load in ambient condition but failed at ∼1500 nN under water. Similarly, the step edge failed at ∼375 and ∼187.5 nN in ambient and underwater conditions, respectively. Our simulations revealed that the increased friction in underwater condition is due to resistance of surrounding water molecules during tip sliding. The presence of water at tip-graphite contact interface generated substantial localized stress, leading to the initiation of wear and revealing the pronounced effect of water on the wear characteristics of graphite in underwater condition.</div></div>\",\"PeriodicalId\":52629,\"journal\":{\"name\":\"Carbon Trends\",\"volume\":\"17 \",\"pages\":\"Article 100414\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon Trends\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667056924000956\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Trends","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667056924000956","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

石墨的摩擦学特性对周围环境极为敏感,这会影响其使用寿命和减摩性能。本研究旨在全面了解液体环境对滑动界面相互作用的影响,从而影响石墨表面的纳米级摩擦学特性。我们结合原子力显微镜实验和分子动力学模拟,对石墨在环境(空气)和水下两种不同环境条件下的摩擦和磨损行为进行了比较分析。我们的研究同时探索了石墨的阶梯边缘和内部(无阶梯)表面。实验结果表明,在这两种环境下,纳米级石墨的摩擦和磨损行为形成了明显的对比。在环境和水下条件下,内表面与金刚石涂层表面的摩擦系数(COF)分别约为 0.003 和 0.006。有趣的是,与周围环境相比,水下环境不仅增加了摩擦力,还大大降低了石墨表面附近石墨烯层的耐磨性,这一点在阶梯边缘和内部无阶梯区域都有体现。内部区域在环境条件下可承受高达 ∼7400 nN 的载荷,但在水下则在∼1500 nN 时失效。同样,在环境和水下条件下,阶梯边缘分别在 375 和 187.5 nN 下失效。我们的模拟结果表明,水下条件下摩擦力增大的原因是尖端滑动时周围水分子的阻力。水在尖端与石墨的接触界面上产生了巨大的局部应力,导致了磨损的开始,并揭示了水在水下条件下对石墨磨损特性的明显影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Nanoscale friction and wear of graphite surface in ambient and underwater conditions
The tribological properties of graphite are extremely sensitive to surrounding environment, which affects its longevity and friction reduction performance. This study aims to develop a comprehensive understanding of the effects of a liquid environment on interactions at the sliding interface, thereby influencing the nanoscale tribological properties of graphite surfaces. By combining atomic force microscopy experiments and molecular dynamics simulations, we conducted a comparative analysis of friction and wear behavior of graphite under two different environmental conditions: ambient (air) and underwater condition. Our investigations explored both the step edge and interior (step-free) graphite surfaces. The experimental results revealed a notable contrast in the frictional and wear behavior of graphite at nanoscale in these two environments. The interior surface exhibited a friction coefficient (COF) of approximately 0.003 and 0.006 against a diamond-coated surface in ambient and underwater conditions, respectively. Interestingly, the underwater environment not only increased friction but also significantly compromised the wear resistance of graphene layers near the graphite surface compared to the ambient environment, as evidenced in both step edge and interior step-free regions. The interior region sustained up to ∼7400 nN load in ambient condition but failed at ∼1500 nN under water. Similarly, the step edge failed at ∼375 and ∼187.5 nN in ambient and underwater conditions, respectively. Our simulations revealed that the increased friction in underwater condition is due to resistance of surrounding water molecules during tip sliding. The presence of water at tip-graphite contact interface generated substantial localized stress, leading to the initiation of wear and revealing the pronounced effect of water on the wear characteristics of graphite in underwater condition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Carbon Trends
Carbon Trends Materials Science-Materials Science (miscellaneous)
CiteScore
4.60
自引率
0.00%
发文量
88
审稿时长
77 days
期刊最新文献
Mechanistic insight into the catalytic activities of metallic sites on nitrogen-doped graphene quantum dots for CO2 hydrogenation Fe-based catalytic modification of a birch sawdust-based carbon structure: The effect of process parameters on the final product using an experimental design Evaluation of morphological, structural, thermal, electrical, and chemical composition properties of graphene oxide, and reduced graphene oxide obtained by sequential reduction methods Eco and user–friendly curcumin based nanocomposite forensic powder from coal fly ash for latent fingerprint detection in crime scenes Reduced thermal conductivity of constricted graphene nanoribbons for thermoelectric applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1