Arlex Marin-Ramirez , David Tyler Mahoney , Brenden Riddle , Leonie Bettel , James F. Fox
{"title":"从示踪结果和机器学习模型看,快速流动的水文通道的响应时间控制着低梯度流域的沉积滞后现象","authors":"Arlex Marin-Ramirez , David Tyler Mahoney , Brenden Riddle , Leonie Bettel , James F. Fox","doi":"10.1016/j.jhydrol.2024.132207","DOIUrl":null,"url":null,"abstract":"<div><div>Hydrologic controls on the timing of sediment transport and sediment hysteresis patterns remain an open area of investigation in hydrology, especially for low-gradient watersheds with substantial instream sediment deposition. Sediment hysteresis, which describes the mismatch between hydrograph peak and sedigraph peak, aids with elucidation of the mechanisms of sediment transport in watersheds. Most frequently, the controls of hysteresis are attributed to the proximity of sediment sources to monitoring locations in a watershed. However, this assumption, while widely applied, is infrequently verified. We investigated the controls of sediment hysteresis in a low gradient system located in the Bluegrass Region of central Kentucky, USA. Turbidity and conductivity sensors installed at the basin outlet provided data to quantify sediment hysteresis and separate hydrologic flow pathways (i.e., by describing the source of water delivered to the watershed’s outlet) using a tracer-based approach. Predictive hydrologic parameters, including hydrologic pathways, event magnitude, and antecedent conditions, were estimated and grouped based on hydrologic similitude. Thereafter, we identified parameters required to predict sediment hysteresis using a tailored ensemble feature selection approach coupled with three machine learning algorithms—Random Forest, K-Nearest Neighbors, and Gradient Boosted Trees. Results from the analysis of 68 storm events occurring over a two-year period showed that clockwise events accounted for 85 % of the total sediment yield despite comprising only 53 % of the events. The hysteresis index (HI) can be predicted (r = 0.8, RMSE = 0.12) using three, out of the thirty-nine hydrologic parameters considered. The most important predictors of HI reflect the volume of event rainfall and the relative proportions of new water (i.e., water derived from precipitation during the storm event) and old water (i.e., water previously stored in the watershed) comprising the hydrograph. Further analyses reveal that new water timing—which changes with the rainfall volume—and sediment timing are closely linked, suggesting that variations in the hysteresis patterns are controlled by changes in the response time of fast flowing water pathways. This implies that hydrologic pathways, as opposed to sediment proximity to the watershed outlet, control sediment hysteresis in this watershed. These results have important implications for better understanding the mechanisms controlling sediment transport at the watershed scale.</div></div>","PeriodicalId":362,"journal":{"name":"Journal of Hydrology","volume":"645 ","pages":"Article 132207"},"PeriodicalIF":5.9000,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Response time of fast flowing hydrologic pathways controls sediment hysteresis in a low-gradient watershed, as evidenced from tracer results and machine learning models\",\"authors\":\"Arlex Marin-Ramirez , David Tyler Mahoney , Brenden Riddle , Leonie Bettel , James F. Fox\",\"doi\":\"10.1016/j.jhydrol.2024.132207\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Hydrologic controls on the timing of sediment transport and sediment hysteresis patterns remain an open area of investigation in hydrology, especially for low-gradient watersheds with substantial instream sediment deposition. Sediment hysteresis, which describes the mismatch between hydrograph peak and sedigraph peak, aids with elucidation of the mechanisms of sediment transport in watersheds. Most frequently, the controls of hysteresis are attributed to the proximity of sediment sources to monitoring locations in a watershed. However, this assumption, while widely applied, is infrequently verified. We investigated the controls of sediment hysteresis in a low gradient system located in the Bluegrass Region of central Kentucky, USA. Turbidity and conductivity sensors installed at the basin outlet provided data to quantify sediment hysteresis and separate hydrologic flow pathways (i.e., by describing the source of water delivered to the watershed’s outlet) using a tracer-based approach. Predictive hydrologic parameters, including hydrologic pathways, event magnitude, and antecedent conditions, were estimated and grouped based on hydrologic similitude. Thereafter, we identified parameters required to predict sediment hysteresis using a tailored ensemble feature selection approach coupled with three machine learning algorithms—Random Forest, K-Nearest Neighbors, and Gradient Boosted Trees. Results from the analysis of 68 storm events occurring over a two-year period showed that clockwise events accounted for 85 % of the total sediment yield despite comprising only 53 % of the events. The hysteresis index (HI) can be predicted (r = 0.8, RMSE = 0.12) using three, out of the thirty-nine hydrologic parameters considered. The most important predictors of HI reflect the volume of event rainfall and the relative proportions of new water (i.e., water derived from precipitation during the storm event) and old water (i.e., water previously stored in the watershed) comprising the hydrograph. Further analyses reveal that new water timing—which changes with the rainfall volume—and sediment timing are closely linked, suggesting that variations in the hysteresis patterns are controlled by changes in the response time of fast flowing water pathways. This implies that hydrologic pathways, as opposed to sediment proximity to the watershed outlet, control sediment hysteresis in this watershed. These results have important implications for better understanding the mechanisms controlling sediment transport at the watershed scale.</div></div>\",\"PeriodicalId\":362,\"journal\":{\"name\":\"Journal of Hydrology\",\"volume\":\"645 \",\"pages\":\"Article 132207\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hydrology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022169424016032\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydrology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022169424016032","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Response time of fast flowing hydrologic pathways controls sediment hysteresis in a low-gradient watershed, as evidenced from tracer results and machine learning models
Hydrologic controls on the timing of sediment transport and sediment hysteresis patterns remain an open area of investigation in hydrology, especially for low-gradient watersheds with substantial instream sediment deposition. Sediment hysteresis, which describes the mismatch between hydrograph peak and sedigraph peak, aids with elucidation of the mechanisms of sediment transport in watersheds. Most frequently, the controls of hysteresis are attributed to the proximity of sediment sources to monitoring locations in a watershed. However, this assumption, while widely applied, is infrequently verified. We investigated the controls of sediment hysteresis in a low gradient system located in the Bluegrass Region of central Kentucky, USA. Turbidity and conductivity sensors installed at the basin outlet provided data to quantify sediment hysteresis and separate hydrologic flow pathways (i.e., by describing the source of water delivered to the watershed’s outlet) using a tracer-based approach. Predictive hydrologic parameters, including hydrologic pathways, event magnitude, and antecedent conditions, were estimated and grouped based on hydrologic similitude. Thereafter, we identified parameters required to predict sediment hysteresis using a tailored ensemble feature selection approach coupled with three machine learning algorithms—Random Forest, K-Nearest Neighbors, and Gradient Boosted Trees. Results from the analysis of 68 storm events occurring over a two-year period showed that clockwise events accounted for 85 % of the total sediment yield despite comprising only 53 % of the events. The hysteresis index (HI) can be predicted (r = 0.8, RMSE = 0.12) using three, out of the thirty-nine hydrologic parameters considered. The most important predictors of HI reflect the volume of event rainfall and the relative proportions of new water (i.e., water derived from precipitation during the storm event) and old water (i.e., water previously stored in the watershed) comprising the hydrograph. Further analyses reveal that new water timing—which changes with the rainfall volume—and sediment timing are closely linked, suggesting that variations in the hysteresis patterns are controlled by changes in the response time of fast flowing water pathways. This implies that hydrologic pathways, as opposed to sediment proximity to the watershed outlet, control sediment hysteresis in this watershed. These results have important implications for better understanding the mechanisms controlling sediment transport at the watershed scale.
期刊介绍:
The Journal of Hydrology publishes original research papers and comprehensive reviews in all the subfields of the hydrological sciences including water based management and policy issues that impact on economics and society. These comprise, but are not limited to the physical, chemical, biogeochemical, stochastic and systems aspects of surface and groundwater hydrology, hydrometeorology and hydrogeology. Relevant topics incorporating the insights and methodologies of disciplines such as climatology, water resource systems, hydraulics, agrohydrology, geomorphology, soil science, instrumentation and remote sensing, civil and environmental engineering are included. Social science perspectives on hydrological problems such as resource and ecological economics, environmental sociology, psychology and behavioural science, management and policy analysis are also invited. Multi-and interdisciplinary analyses of hydrological problems are within scope. The science published in the Journal of Hydrology is relevant to catchment scales rather than exclusively to a local scale or site.