{"title":"冲击荷载下金属-玻璃界面的动态故障","authors":"Haifeng Yang, Songlin Xu, Liangzhu Yuan, Meiduo Chen, Yushan Xie, Pengfei Wang","doi":"10.1016/j.ijimpeng.2024.105136","DOIUrl":null,"url":null,"abstract":"<div><div>To investigate dynamic fracture behavior in the metal, three metal spheres (e.g., steel sphere, high purity tungsten sphere, and high purity lead sphere) are accelerated by the gas gun devices to impact glass spheres under the critical speed range (i.e., from 70 m/s to 210 m/s). The velocity interferometer system for any reflector (VISAR) devices are employed to measure the particle velocities at the back surface of glass sphere, and high-speed photographs are utilized to capture the failure process at the metal-glass interface. Due to the asynchronous evolutions of stress fields and strain fields in the violent failure process, the results illustrate quite different failure mechanisms from those by the Split Hopkinson Pressure Bar (SHPB) impacting. Fragmentations of the glass sphere are caused mainly by the radial cracks and the lateral cracks around the metal-glass interface and the edges of the sphere with increasing impact velocity. Dynamic failures in the three metal impactors exhibit different modes, e.g., tensile fracture in the steel impactor, shear fracture in the tungsten impactor, and compressed yielding in the lead impactor. The transferring of strain energy releasing is introduced to describe the failure behavior at the metal-glass interface, and a relaxation-diffusion equation of strain energy releasing is then established based on the experimental results and the numeric results by the discrete element method (DEM). The evolutions of failures at the metal-glass interface are discussed. Further investigation is conducted to describe the dynamic fractures in tungsten impactors and steel impactors based on the dimensional analyses, and the quantitative expressions of these strain rate dependent fracture strains and crack width in the metal impactors are obtained. The results are helpful for the profound understanding of the dynamic fracture in the metal structures and the dynamic fragmentations in the brittle material when subjected to impact loading.</div></div>","PeriodicalId":50318,"journal":{"name":"International Journal of Impact Engineering","volume":"195 ","pages":"Article 105136"},"PeriodicalIF":5.1000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic failures at the metal-glass interface under impact loading\",\"authors\":\"Haifeng Yang, Songlin Xu, Liangzhu Yuan, Meiduo Chen, Yushan Xie, Pengfei Wang\",\"doi\":\"10.1016/j.ijimpeng.2024.105136\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>To investigate dynamic fracture behavior in the metal, three metal spheres (e.g., steel sphere, high purity tungsten sphere, and high purity lead sphere) are accelerated by the gas gun devices to impact glass spheres under the critical speed range (i.e., from 70 m/s to 210 m/s). The velocity interferometer system for any reflector (VISAR) devices are employed to measure the particle velocities at the back surface of glass sphere, and high-speed photographs are utilized to capture the failure process at the metal-glass interface. Due to the asynchronous evolutions of stress fields and strain fields in the violent failure process, the results illustrate quite different failure mechanisms from those by the Split Hopkinson Pressure Bar (SHPB) impacting. Fragmentations of the glass sphere are caused mainly by the radial cracks and the lateral cracks around the metal-glass interface and the edges of the sphere with increasing impact velocity. Dynamic failures in the three metal impactors exhibit different modes, e.g., tensile fracture in the steel impactor, shear fracture in the tungsten impactor, and compressed yielding in the lead impactor. The transferring of strain energy releasing is introduced to describe the failure behavior at the metal-glass interface, and a relaxation-diffusion equation of strain energy releasing is then established based on the experimental results and the numeric results by the discrete element method (DEM). The evolutions of failures at the metal-glass interface are discussed. Further investigation is conducted to describe the dynamic fractures in tungsten impactors and steel impactors based on the dimensional analyses, and the quantitative expressions of these strain rate dependent fracture strains and crack width in the metal impactors are obtained. The results are helpful for the profound understanding of the dynamic fracture in the metal structures and the dynamic fragmentations in the brittle material when subjected to impact loading.</div></div>\",\"PeriodicalId\":50318,\"journal\":{\"name\":\"International Journal of Impact Engineering\",\"volume\":\"195 \",\"pages\":\"Article 105136\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Impact Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0734743X24002616\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Impact Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0734743X24002616","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Dynamic failures at the metal-glass interface under impact loading
To investigate dynamic fracture behavior in the metal, three metal spheres (e.g., steel sphere, high purity tungsten sphere, and high purity lead sphere) are accelerated by the gas gun devices to impact glass spheres under the critical speed range (i.e., from 70 m/s to 210 m/s). The velocity interferometer system for any reflector (VISAR) devices are employed to measure the particle velocities at the back surface of glass sphere, and high-speed photographs are utilized to capture the failure process at the metal-glass interface. Due to the asynchronous evolutions of stress fields and strain fields in the violent failure process, the results illustrate quite different failure mechanisms from those by the Split Hopkinson Pressure Bar (SHPB) impacting. Fragmentations of the glass sphere are caused mainly by the radial cracks and the lateral cracks around the metal-glass interface and the edges of the sphere with increasing impact velocity. Dynamic failures in the three metal impactors exhibit different modes, e.g., tensile fracture in the steel impactor, shear fracture in the tungsten impactor, and compressed yielding in the lead impactor. The transferring of strain energy releasing is introduced to describe the failure behavior at the metal-glass interface, and a relaxation-diffusion equation of strain energy releasing is then established based on the experimental results and the numeric results by the discrete element method (DEM). The evolutions of failures at the metal-glass interface are discussed. Further investigation is conducted to describe the dynamic fractures in tungsten impactors and steel impactors based on the dimensional analyses, and the quantitative expressions of these strain rate dependent fracture strains and crack width in the metal impactors are obtained. The results are helpful for the profound understanding of the dynamic fracture in the metal structures and the dynamic fragmentations in the brittle material when subjected to impact loading.
期刊介绍:
The International Journal of Impact Engineering, established in 1983 publishes original research findings related to the response of structures, components and materials subjected to impact, blast and high-rate loading. Areas relevant to the journal encompass the following general topics and those associated with them:
-Behaviour and failure of structures and materials under impact and blast loading
-Systems for protection and absorption of impact and blast loading
-Terminal ballistics
-Dynamic behaviour and failure of materials including plasticity and fracture
-Stress waves
-Structural crashworthiness
-High-rate mechanical and forming processes
-Impact, blast and high-rate loading/measurement techniques and their applications