Edoardo Severini , Monia Magri , Elisa Soana , Marco Bartoli
{"title":"揭示关系:探索河流生态系统富营养化的主要驱动因素--河流与地下水的相互作用","authors":"Edoardo Severini , Monia Magri , Elisa Soana , Marco Bartoli","doi":"10.1016/j.jhydrol.2024.132185","DOIUrl":null,"url":null,"abstract":"<div><div>Over recent decades, increased agricultural activities have significantly modified nitrogen (N) and water cycles, leading to a worsening of the environmental quality and widespread eutrophication. The present work investigates the critical issue of N contamination and its impact on eutrophication in three rivers located in the central part of the Po Plain (Northern Italy), one of Europe’s hotspots of N-fertilizers input and loss to aquatic ecosystems. The primary scientific problem addressed is the role of river-groundwater interactions in exacerbating eutrophication, primarily driven by nitrate (NO<sub>3</sub><sup>-</sup>). Historical data from the past ten years on dissolved inorganic N forms in groundwater and rivers were analyzed and interpreted in relation to different watershed managements. This analysis quantified both the volumetric and qualitative contributions of river-groundwater interactions to rivers eutrophication.</div><div>Results indicate that river-groundwater interactions can be indeed the main cause of eutrophication in intensively cultivated watersheds, with effects surpassing those of typical causes like wastewater. The study highlights how the simultaneous presence of inefficient irrigation practices promotes surface water (and groundwater) overexploitation, reducing dilution and increasing contamination. All the analyzed rivers showed localized increase in NO<sub>3</sub><sup>-</sup> concentration and worsening of their trophic status. Given the foresaw increase in groundwater and surface water use for irrigation under climate change pressures, this research provides a crucial empirical example of future challenges for regions with high N inputs and close relations among soil, groundwater, and surface water. The findings emphasize the urgent need for improved water and agricultural management to mitigate river-groundwater interaction-induced eutrophication.</div></div>","PeriodicalId":362,"journal":{"name":"Journal of Hydrology","volume":"645 ","pages":"Article 132185"},"PeriodicalIF":5.9000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unraveling the nexus: exploring river-groundwater interaction as the primary driver of eutrophication in river ecosystems\",\"authors\":\"Edoardo Severini , Monia Magri , Elisa Soana , Marco Bartoli\",\"doi\":\"10.1016/j.jhydrol.2024.132185\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Over recent decades, increased agricultural activities have significantly modified nitrogen (N) and water cycles, leading to a worsening of the environmental quality and widespread eutrophication. The present work investigates the critical issue of N contamination and its impact on eutrophication in three rivers located in the central part of the Po Plain (Northern Italy), one of Europe’s hotspots of N-fertilizers input and loss to aquatic ecosystems. The primary scientific problem addressed is the role of river-groundwater interactions in exacerbating eutrophication, primarily driven by nitrate (NO<sub>3</sub><sup>-</sup>). Historical data from the past ten years on dissolved inorganic N forms in groundwater and rivers were analyzed and interpreted in relation to different watershed managements. This analysis quantified both the volumetric and qualitative contributions of river-groundwater interactions to rivers eutrophication.</div><div>Results indicate that river-groundwater interactions can be indeed the main cause of eutrophication in intensively cultivated watersheds, with effects surpassing those of typical causes like wastewater. The study highlights how the simultaneous presence of inefficient irrigation practices promotes surface water (and groundwater) overexploitation, reducing dilution and increasing contamination. All the analyzed rivers showed localized increase in NO<sub>3</sub><sup>-</sup> concentration and worsening of their trophic status. Given the foresaw increase in groundwater and surface water use for irrigation under climate change pressures, this research provides a crucial empirical example of future challenges for regions with high N inputs and close relations among soil, groundwater, and surface water. The findings emphasize the urgent need for improved water and agricultural management to mitigate river-groundwater interaction-induced eutrophication.</div></div>\",\"PeriodicalId\":362,\"journal\":{\"name\":\"Journal of Hydrology\",\"volume\":\"645 \",\"pages\":\"Article 132185\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hydrology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022169424015816\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydrology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022169424015816","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Unraveling the nexus: exploring river-groundwater interaction as the primary driver of eutrophication in river ecosystems
Over recent decades, increased agricultural activities have significantly modified nitrogen (N) and water cycles, leading to a worsening of the environmental quality and widespread eutrophication. The present work investigates the critical issue of N contamination and its impact on eutrophication in three rivers located in the central part of the Po Plain (Northern Italy), one of Europe’s hotspots of N-fertilizers input and loss to aquatic ecosystems. The primary scientific problem addressed is the role of river-groundwater interactions in exacerbating eutrophication, primarily driven by nitrate (NO3-). Historical data from the past ten years on dissolved inorganic N forms in groundwater and rivers were analyzed and interpreted in relation to different watershed managements. This analysis quantified both the volumetric and qualitative contributions of river-groundwater interactions to rivers eutrophication.
Results indicate that river-groundwater interactions can be indeed the main cause of eutrophication in intensively cultivated watersheds, with effects surpassing those of typical causes like wastewater. The study highlights how the simultaneous presence of inefficient irrigation practices promotes surface water (and groundwater) overexploitation, reducing dilution and increasing contamination. All the analyzed rivers showed localized increase in NO3- concentration and worsening of their trophic status. Given the foresaw increase in groundwater and surface water use for irrigation under climate change pressures, this research provides a crucial empirical example of future challenges for regions with high N inputs and close relations among soil, groundwater, and surface water. The findings emphasize the urgent need for improved water and agricultural management to mitigate river-groundwater interaction-induced eutrophication.
期刊介绍:
The Journal of Hydrology publishes original research papers and comprehensive reviews in all the subfields of the hydrological sciences including water based management and policy issues that impact on economics and society. These comprise, but are not limited to the physical, chemical, biogeochemical, stochastic and systems aspects of surface and groundwater hydrology, hydrometeorology and hydrogeology. Relevant topics incorporating the insights and methodologies of disciplines such as climatology, water resource systems, hydraulics, agrohydrology, geomorphology, soil science, instrumentation and remote sensing, civil and environmental engineering are included. Social science perspectives on hydrological problems such as resource and ecological economics, environmental sociology, psychology and behavioural science, management and policy analysis are also invited. Multi-and interdisciplinary analyses of hydrological problems are within scope. The science published in the Journal of Hydrology is relevant to catchment scales rather than exclusively to a local scale or site.