简单行为宏观经济模型缺乏参数识别

IF 1.9 3区 经济学 Q2 ECONOMICS Journal of Economic Dynamics & Control Pub Date : 2024-10-16 DOI:10.1016/j.jedc.2024.104972
Thomas Lux
{"title":"简单行为宏观经济模型缺乏参数识别","authors":"Thomas Lux","doi":"10.1016/j.jedc.2024.104972","DOIUrl":null,"url":null,"abstract":"<div><div>Identifiability of the parameters is an important precondition for consistent estimation of models designed to describe empirical phenomena. Nevertheless, many estimation exercises proceed without a preliminary investigation into the identifiability of their models. As a consequence, the estimates could be essentially meaningless if convergence to the ‘true’ parameters is not guaranteed in the pertinent problem. We provide some evidence here that such a lack of identification is responsible for the inconclusive results reported in recent literature on parameter estimates for a certain class of nonlinear behavioral New Keynesian models. We also show that identifiability depends on the subtle details of the model structure. Hence, a careful investigation of identifiability should precede any attempt at estimation of such models.</div></div>","PeriodicalId":48314,"journal":{"name":"Journal of Economic Dynamics & Control","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lack of identification of parameters in a simple behavioral macroeconomic model\",\"authors\":\"Thomas Lux\",\"doi\":\"10.1016/j.jedc.2024.104972\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Identifiability of the parameters is an important precondition for consistent estimation of models designed to describe empirical phenomena. Nevertheless, many estimation exercises proceed without a preliminary investigation into the identifiability of their models. As a consequence, the estimates could be essentially meaningless if convergence to the ‘true’ parameters is not guaranteed in the pertinent problem. We provide some evidence here that such a lack of identification is responsible for the inconclusive results reported in recent literature on parameter estimates for a certain class of nonlinear behavioral New Keynesian models. We also show that identifiability depends on the subtle details of the model structure. Hence, a careful investigation of identifiability should precede any attempt at estimation of such models.</div></div>\",\"PeriodicalId\":48314,\"journal\":{\"name\":\"Journal of Economic Dynamics & Control\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Economic Dynamics & Control\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0165188924001647\",\"RegionNum\":3,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Economic Dynamics & Control","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165188924001647","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

参数的可识别性是对旨在描述经验现象的模型进行一致估计的重要前提。然而,许多估算工作都没有对模型的可识别性进行初步研究。因此,如果在相关问题中不能保证收敛到 "真实 "参数,那么估算结果可能基本上毫无意义。我们在此提供了一些证据,证明这种可识别性的缺乏是近期文献中报道的某类非线性行为新凯恩斯主义模型参数估计结果不确定的原因。我们还表明,可识别性取决于模型结构的微妙细节。因此,在对此类模型进行任何估计之前,都应仔细研究其可识别性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Lack of identification of parameters in a simple behavioral macroeconomic model
Identifiability of the parameters is an important precondition for consistent estimation of models designed to describe empirical phenomena. Nevertheless, many estimation exercises proceed without a preliminary investigation into the identifiability of their models. As a consequence, the estimates could be essentially meaningless if convergence to the ‘true’ parameters is not guaranteed in the pertinent problem. We provide some evidence here that such a lack of identification is responsible for the inconclusive results reported in recent literature on parameter estimates for a certain class of nonlinear behavioral New Keynesian models. We also show that identifiability depends on the subtle details of the model structure. Hence, a careful investigation of identifiability should precede any attempt at estimation of such models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
10.50%
发文量
199
期刊介绍: The journal provides an outlet for publication of research concerning all theoretical and empirical aspects of economic dynamics and control as well as the development and use of computational methods in economics and finance. Contributions regarding computational methods may include, but are not restricted to, artificial intelligence, databases, decision support systems, genetic algorithms, modelling languages, neural networks, numerical algorithms for optimization, control and equilibria, parallel computing and qualitative reasoning.
期刊最新文献
When and how should an incumbent respond to a potentially disruptive event? Systemic risk in banking, fire sales, and macroeconomic disasters The labor market channel of systemic risk Lack of identification of parameters in a simple behavioral macroeconomic model Heterogeneous beliefs and short selling taxes: A note
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1