Walaa M. Abd El-Gawad , Khlood S. Abdel Zaher , Galal A.M. Nawwar
{"title":"探索稻草黑液的用途(第十一部分):使用木质素基混合纳米颜料增强环氧涂料的抗紫外线性能、色彩、抗菌性和机械特性","authors":"Walaa M. Abd El-Gawad , Khlood S. Abdel Zaher , Galal A.M. Nawwar","doi":"10.1016/j.porgcoat.2024.108866","DOIUrl":null,"url":null,"abstract":"<div><div>The key purpose of this work is to prepare multifunctional colored coatings with good UV resistance and antimicrobial activity by incorporating lignin complex nanoparticles as hybrid nano-pigments. Firstly, four complexes [e.g., zinc (lignin/silica/fatty acids), calcium (lignin/silica/fatty acids), aluminum (lignin/silica/fatty acids), and copper (lignin/silica/fatty acids)] were synthesized on a nanoscale utilizing rice straw pulping black liquor. Then, epoxy was reinforced with 1, 2, and 4% of each of the four complexes, and their visual inspection and their mechanical properties were investigated. The findings demonstrate that four paint films of 2% Zn (LSF)-epoxy, 2% Ca (LSF)-epoxy, 2% Al (LSF)-epoxy, and 2% Cu (LSF)-epoxy are the optimum films due to their surface being homogenous and uniform without agglomeration or voids. The coatings in group II were subjected to 100 h of continuous UV irradiation, and the changes caused were determined by FT-IR, SEM, and CIE Lab (color) techniques. The results reveal that there is no significant difference between the coatings before and after the UV irradiation. In the case of specimens containing only epoxy, a significant change was observed. These results confirm that the integration of the hybrid nano-pigments has improved the UV resistance of epoxy coatings. Besides, the results showed that Zn (LSF)-epoxy, Ca (LSF)-epoxy, and Cu (LSF)-epoxy coatings have good antimicrobial activity.</div></div>","PeriodicalId":20834,"journal":{"name":"Progress in Organic Coatings","volume":"197 ","pages":"Article 108866"},"PeriodicalIF":6.5000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring the utilities of rice straw black liquor (part XI): Enhancing the UV resistance, color, antimicrobial, and mechanical characteristics of epoxy coatings using lignin-based hybrid nano-pigments\",\"authors\":\"Walaa M. Abd El-Gawad , Khlood S. Abdel Zaher , Galal A.M. Nawwar\",\"doi\":\"10.1016/j.porgcoat.2024.108866\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The key purpose of this work is to prepare multifunctional colored coatings with good UV resistance and antimicrobial activity by incorporating lignin complex nanoparticles as hybrid nano-pigments. Firstly, four complexes [e.g., zinc (lignin/silica/fatty acids), calcium (lignin/silica/fatty acids), aluminum (lignin/silica/fatty acids), and copper (lignin/silica/fatty acids)] were synthesized on a nanoscale utilizing rice straw pulping black liquor. Then, epoxy was reinforced with 1, 2, and 4% of each of the four complexes, and their visual inspection and their mechanical properties were investigated. The findings demonstrate that four paint films of 2% Zn (LSF)-epoxy, 2% Ca (LSF)-epoxy, 2% Al (LSF)-epoxy, and 2% Cu (LSF)-epoxy are the optimum films due to their surface being homogenous and uniform without agglomeration or voids. The coatings in group II were subjected to 100 h of continuous UV irradiation, and the changes caused were determined by FT-IR, SEM, and CIE Lab (color) techniques. The results reveal that there is no significant difference between the coatings before and after the UV irradiation. In the case of specimens containing only epoxy, a significant change was observed. These results confirm that the integration of the hybrid nano-pigments has improved the UV resistance of epoxy coatings. Besides, the results showed that Zn (LSF)-epoxy, Ca (LSF)-epoxy, and Cu (LSF)-epoxy coatings have good antimicrobial activity.</div></div>\",\"PeriodicalId\":20834,\"journal\":{\"name\":\"Progress in Organic Coatings\",\"volume\":\"197 \",\"pages\":\"Article 108866\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Organic Coatings\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0300944024006581\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Organic Coatings","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0300944024006581","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Exploring the utilities of rice straw black liquor (part XI): Enhancing the UV resistance, color, antimicrobial, and mechanical characteristics of epoxy coatings using lignin-based hybrid nano-pigments
The key purpose of this work is to prepare multifunctional colored coatings with good UV resistance and antimicrobial activity by incorporating lignin complex nanoparticles as hybrid nano-pigments. Firstly, four complexes [e.g., zinc (lignin/silica/fatty acids), calcium (lignin/silica/fatty acids), aluminum (lignin/silica/fatty acids), and copper (lignin/silica/fatty acids)] were synthesized on a nanoscale utilizing rice straw pulping black liquor. Then, epoxy was reinforced with 1, 2, and 4% of each of the four complexes, and their visual inspection and their mechanical properties were investigated. The findings demonstrate that four paint films of 2% Zn (LSF)-epoxy, 2% Ca (LSF)-epoxy, 2% Al (LSF)-epoxy, and 2% Cu (LSF)-epoxy are the optimum films due to their surface being homogenous and uniform without agglomeration or voids. The coatings in group II were subjected to 100 h of continuous UV irradiation, and the changes caused were determined by FT-IR, SEM, and CIE Lab (color) techniques. The results reveal that there is no significant difference between the coatings before and after the UV irradiation. In the case of specimens containing only epoxy, a significant change was observed. These results confirm that the integration of the hybrid nano-pigments has improved the UV resistance of epoxy coatings. Besides, the results showed that Zn (LSF)-epoxy, Ca (LSF)-epoxy, and Cu (LSF)-epoxy coatings have good antimicrobial activity.
期刊介绍:
The aim of this international journal is to analyse and publicise the progress and current state of knowledge in the field of organic coatings and related materials. The Editors and the Editorial Board members will solicit both review and research papers from academic and industrial scientists who are actively engaged in research and development or, in the case of review papers, have extensive experience in the subject to be reviewed. Unsolicited manuscripts will be accepted if they meet the journal''s requirements. The journal publishes papers dealing with such subjects as:
• Chemical, physical and technological properties of organic coatings and related materials
• Problems and methods of preparation, manufacture and application of these materials
• Performance, testing and analysis.