Han Yu, Xingjie Li, Huasheng Xie, Xinyue Li, Chunyu Hou
{"title":"通过对医学射线照片的预先培训,提高射线照片检测中的工业缺陷识别能力","authors":"Han Yu, Xingjie Li, Huasheng Xie, Xinyue Li, Chunyu Hou","doi":"10.1016/j.ndteint.2024.103260","DOIUrl":null,"url":null,"abstract":"<div><div>Deep learning methodologies have gained substantial traction for defect recognition in industrial radiographic testing including welds, castings and other fields. Regardless of the deep learning utilized, it has emerged as a standard configuration to use a model pre-trained from ImageNet to accelerate convergence and enhance recognition accuracy. However, there is a significant gap between the domain of natural images and industrial radiographs, raising the question of whether there might be a superior pre-training method than relying on ImageNet pre-training. Fortunately, medical radiographs are more similar to industrial radiographs than natural images because of the same imaging method. In this paper, we initially utilize numerous medical radiographic images from CheXpert dataset to train a pre-trained CNN model. Then, we apply this model to four distinct tasks within two radiographic testing scenarios to validate its advantages and generalization capabilities. Finally, experiments on multiple datasets indicate that our method brings more benefits than ImageNet pre-training or training from scratch, with a F1 score improvement of 3.41 %–13.72 % for defect classification and a mIoU improvement of 1.05 %–6.58 % for defect segmentation. It demonstrates that pre-training from medical radiographs provides a cost-free improvement for all kinds of tasks in industrial defect recognition.</div></div>","PeriodicalId":18868,"journal":{"name":"Ndt & E International","volume":"149 ","pages":"Article 103260"},"PeriodicalIF":4.1000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving the industrial defect recognition in radiographic testing by pre-training on medical radiographs\",\"authors\":\"Han Yu, Xingjie Li, Huasheng Xie, Xinyue Li, Chunyu Hou\",\"doi\":\"10.1016/j.ndteint.2024.103260\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Deep learning methodologies have gained substantial traction for defect recognition in industrial radiographic testing including welds, castings and other fields. Regardless of the deep learning utilized, it has emerged as a standard configuration to use a model pre-trained from ImageNet to accelerate convergence and enhance recognition accuracy. However, there is a significant gap between the domain of natural images and industrial radiographs, raising the question of whether there might be a superior pre-training method than relying on ImageNet pre-training. Fortunately, medical radiographs are more similar to industrial radiographs than natural images because of the same imaging method. In this paper, we initially utilize numerous medical radiographic images from CheXpert dataset to train a pre-trained CNN model. Then, we apply this model to four distinct tasks within two radiographic testing scenarios to validate its advantages and generalization capabilities. Finally, experiments on multiple datasets indicate that our method brings more benefits than ImageNet pre-training or training from scratch, with a F1 score improvement of 3.41 %–13.72 % for defect classification and a mIoU improvement of 1.05 %–6.58 % for defect segmentation. It demonstrates that pre-training from medical radiographs provides a cost-free improvement for all kinds of tasks in industrial defect recognition.</div></div>\",\"PeriodicalId\":18868,\"journal\":{\"name\":\"Ndt & E International\",\"volume\":\"149 \",\"pages\":\"Article 103260\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ndt & E International\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0963869524002251\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ndt & E International","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0963869524002251","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
Improving the industrial defect recognition in radiographic testing by pre-training on medical radiographs
Deep learning methodologies have gained substantial traction for defect recognition in industrial radiographic testing including welds, castings and other fields. Regardless of the deep learning utilized, it has emerged as a standard configuration to use a model pre-trained from ImageNet to accelerate convergence and enhance recognition accuracy. However, there is a significant gap between the domain of natural images and industrial radiographs, raising the question of whether there might be a superior pre-training method than relying on ImageNet pre-training. Fortunately, medical radiographs are more similar to industrial radiographs than natural images because of the same imaging method. In this paper, we initially utilize numerous medical radiographic images from CheXpert dataset to train a pre-trained CNN model. Then, we apply this model to four distinct tasks within two radiographic testing scenarios to validate its advantages and generalization capabilities. Finally, experiments on multiple datasets indicate that our method brings more benefits than ImageNet pre-training or training from scratch, with a F1 score improvement of 3.41 %–13.72 % for defect classification and a mIoU improvement of 1.05 %–6.58 % for defect segmentation. It demonstrates that pre-training from medical radiographs provides a cost-free improvement for all kinds of tasks in industrial defect recognition.
期刊介绍:
NDT&E international publishes peer-reviewed results of original research and development in all categories of the fields of nondestructive testing and evaluation including ultrasonics, electromagnetics, radiography, optical and thermal methods. In addition to traditional NDE topics, the emerging technology area of inspection of civil structures and materials is also emphasized. The journal publishes original papers on research and development of new inspection techniques and methods, as well as on novel and innovative applications of established methods. Papers on NDE sensors and their applications both for inspection and process control, as well as papers describing novel NDE systems for structural health monitoring and their performance in industrial settings are also considered. Other regular features include international news, new equipment and a calendar of forthcoming worldwide meetings. This journal is listed in Current Contents.