Rongbiao Wang , Yongzhi Chen , Haozhi Yu , Zhiyuan Xu , Jian Tang , Bo Feng , Yihua Kang , Kai Song
{"title":"基于交流漏磁通时域信号特征的缺陷分类和量化方法","authors":"Rongbiao Wang , Yongzhi Chen , Haozhi Yu , Zhiyuan Xu , Jian Tang , Bo Feng , Yihua Kang , Kai Song","doi":"10.1016/j.ndteint.2024.103250","DOIUrl":null,"url":null,"abstract":"<div><div>Pipelines play a crucial role in industries such as petroleum and nuclear power, where non-destructive testing is essential. Magnetic flux leakage testing methods are widely used for pipeline inspection due to their ability to detect both internal and external defects. However, accurately classifying and evaluating the size of such defects poses challenges due to the complex coupling relationship between ferromagnetic materials and defect magnetic fields. This paper proposes a method for defect classification and quantification based on the time domain characteristics of AC magnetic flux leakage signals. Firstly, the paper explores the shielding effects caused by transient high magnetic permeability within the material on signals from internal defects. It analyzes the differences in signals between internal and external defects. Then, based on the nonlinear attributes of defect signals, the paper proposes a defect classification method based on derivatives analysis of the windowed time-domain signal. Moreover, the study finds that rising time and zero-crossing time can be used to assess the depth of internal and external defects separately, which can decouple the width and depth. Finally, experimental validation confirms the effectiveness of defects classification and quantification. This paper provides a feasible method for evaluating the defect of ferromagnetic materials.</div></div>","PeriodicalId":18868,"journal":{"name":"Ndt & E International","volume":"149 ","pages":"Article 103250"},"PeriodicalIF":4.1000,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Defect classification and quantification method based on AC magnetic flux leakage time domain signal characteristics\",\"authors\":\"Rongbiao Wang , Yongzhi Chen , Haozhi Yu , Zhiyuan Xu , Jian Tang , Bo Feng , Yihua Kang , Kai Song\",\"doi\":\"10.1016/j.ndteint.2024.103250\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Pipelines play a crucial role in industries such as petroleum and nuclear power, where non-destructive testing is essential. Magnetic flux leakage testing methods are widely used for pipeline inspection due to their ability to detect both internal and external defects. However, accurately classifying and evaluating the size of such defects poses challenges due to the complex coupling relationship between ferromagnetic materials and defect magnetic fields. This paper proposes a method for defect classification and quantification based on the time domain characteristics of AC magnetic flux leakage signals. Firstly, the paper explores the shielding effects caused by transient high magnetic permeability within the material on signals from internal defects. It analyzes the differences in signals between internal and external defects. Then, based on the nonlinear attributes of defect signals, the paper proposes a defect classification method based on derivatives analysis of the windowed time-domain signal. Moreover, the study finds that rising time and zero-crossing time can be used to assess the depth of internal and external defects separately, which can decouple the width and depth. Finally, experimental validation confirms the effectiveness of defects classification and quantification. This paper provides a feasible method for evaluating the defect of ferromagnetic materials.</div></div>\",\"PeriodicalId\":18868,\"journal\":{\"name\":\"Ndt & E International\",\"volume\":\"149 \",\"pages\":\"Article 103250\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ndt & E International\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0963869524002159\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ndt & E International","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0963869524002159","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
Defect classification and quantification method based on AC magnetic flux leakage time domain signal characteristics
Pipelines play a crucial role in industries such as petroleum and nuclear power, where non-destructive testing is essential. Magnetic flux leakage testing methods are widely used for pipeline inspection due to their ability to detect both internal and external defects. However, accurately classifying and evaluating the size of such defects poses challenges due to the complex coupling relationship between ferromagnetic materials and defect magnetic fields. This paper proposes a method for defect classification and quantification based on the time domain characteristics of AC magnetic flux leakage signals. Firstly, the paper explores the shielding effects caused by transient high magnetic permeability within the material on signals from internal defects. It analyzes the differences in signals between internal and external defects. Then, based on the nonlinear attributes of defect signals, the paper proposes a defect classification method based on derivatives analysis of the windowed time-domain signal. Moreover, the study finds that rising time and zero-crossing time can be used to assess the depth of internal and external defects separately, which can decouple the width and depth. Finally, experimental validation confirms the effectiveness of defects classification and quantification. This paper provides a feasible method for evaluating the defect of ferromagnetic materials.
期刊介绍:
NDT&E international publishes peer-reviewed results of original research and development in all categories of the fields of nondestructive testing and evaluation including ultrasonics, electromagnetics, radiography, optical and thermal methods. In addition to traditional NDE topics, the emerging technology area of inspection of civil structures and materials is also emphasized. The journal publishes original papers on research and development of new inspection techniques and methods, as well as on novel and innovative applications of established methods. Papers on NDE sensors and their applications both for inspection and process control, as well as papers describing novel NDE systems for structural health monitoring and their performance in industrial settings are also considered. Other regular features include international news, new equipment and a calendar of forthcoming worldwide meetings. This journal is listed in Current Contents.