实现铁磁材料非线性磁滞行为的精确模拟

IF 4.4 2区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY Applied Mathematical Modelling Pub Date : 2024-10-11 DOI:10.1016/j.apm.2024.115739
Jingyu Zheng , Xin Hu , Guangze Tang , Zhenhui Liu , She Li , Hanghang Yan , Xiangyang Cui
{"title":"实现铁磁材料非线性磁滞行为的精确模拟","authors":"Jingyu Zheng ,&nbsp;Xin Hu ,&nbsp;Guangze Tang ,&nbsp;Zhenhui Liu ,&nbsp;She Li ,&nbsp;Hanghang Yan ,&nbsp;Xiangyang Cui","doi":"10.1016/j.apm.2024.115739","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, a stable node - based smoothed finite - element method algorithm is developed to address the lower accurate issues in the simulation of the magnetic hysteresis behavior in ferromagnetic materials, in which the inverse vector Jiles - Atherton model is intimately coupled. The improvement of the accuracy for hysteresis issues is achieved by linking the stable node - based smoothed finite - element method in the framework of the Newton - Raphson iteration and the Jiles - Atherton model. The optimal relaxation coefficient method is introduced to address the natural strong nonlinearity of the Jiles - Atherton model and to ensure the convergence of the model. The algorithm is validated against the experimental results, and several examples are presented for simulations of the ferromagnetic hysteresis issues to illustrate both the accuracy and expandability in the practical scenarios of ferromagnetic materials.</div></div>","PeriodicalId":50980,"journal":{"name":"Applied Mathematical Modelling","volume":"138 ","pages":"Article 115739"},"PeriodicalIF":4.4000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enabling accurate simulations of the nonlinear magnetic hysteresis behavior in ferromagnetic materials\",\"authors\":\"Jingyu Zheng ,&nbsp;Xin Hu ,&nbsp;Guangze Tang ,&nbsp;Zhenhui Liu ,&nbsp;She Li ,&nbsp;Hanghang Yan ,&nbsp;Xiangyang Cui\",\"doi\":\"10.1016/j.apm.2024.115739\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this work, a stable node - based smoothed finite - element method algorithm is developed to address the lower accurate issues in the simulation of the magnetic hysteresis behavior in ferromagnetic materials, in which the inverse vector Jiles - Atherton model is intimately coupled. The improvement of the accuracy for hysteresis issues is achieved by linking the stable node - based smoothed finite - element method in the framework of the Newton - Raphson iteration and the Jiles - Atherton model. The optimal relaxation coefficient method is introduced to address the natural strong nonlinearity of the Jiles - Atherton model and to ensure the convergence of the model. The algorithm is validated against the experimental results, and several examples are presented for simulations of the ferromagnetic hysteresis issues to illustrate both the accuracy and expandability in the practical scenarios of ferromagnetic materials.</div></div>\",\"PeriodicalId\":50980,\"journal\":{\"name\":\"Applied Mathematical Modelling\",\"volume\":\"138 \",\"pages\":\"Article 115739\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematical Modelling\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0307904X2400492X\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematical Modelling","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0307904X2400492X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,开发了一种基于稳定节点的平滑有限元法算法,以解决铁磁材料磁滞行为模拟中精度较低的问题,其中反矢量 Jiles - Atherton 模型与该算法密切相关。在牛顿-拉斐尔森迭代和 Jiles - Atherton 模型的框架内,通过将基于稳定节点的平滑有限元法联系起来,提高了磁滞问题的精确度。为解决 Jiles - Atherton 模型的天然强非线性问题并确保模型的收敛性,引入了最优松弛系数法。该算法根据实验结果进行了验证,并介绍了几个模拟铁磁滞后问题的实例,以说明其在铁磁材料实际应用中的准确性和可扩展性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enabling accurate simulations of the nonlinear magnetic hysteresis behavior in ferromagnetic materials
In this work, a stable node - based smoothed finite - element method algorithm is developed to address the lower accurate issues in the simulation of the magnetic hysteresis behavior in ferromagnetic materials, in which the inverse vector Jiles - Atherton model is intimately coupled. The improvement of the accuracy for hysteresis issues is achieved by linking the stable node - based smoothed finite - element method in the framework of the Newton - Raphson iteration and the Jiles - Atherton model. The optimal relaxation coefficient method is introduced to address the natural strong nonlinearity of the Jiles - Atherton model and to ensure the convergence of the model. The algorithm is validated against the experimental results, and several examples are presented for simulations of the ferromagnetic hysteresis issues to illustrate both the accuracy and expandability in the practical scenarios of ferromagnetic materials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Mathematical Modelling
Applied Mathematical Modelling 数学-工程:综合
CiteScore
9.80
自引率
8.00%
发文量
508
审稿时长
43 days
期刊介绍: Applied Mathematical Modelling focuses on research related to the mathematical modelling of engineering and environmental processes, manufacturing, and industrial systems. A significant emerging area of research activity involves multiphysics processes, and contributions in this area are particularly encouraged. This influential publication covers a wide spectrum of subjects including heat transfer, fluid mechanics, CFD, and transport phenomena; solid mechanics and mechanics of metals; electromagnets and MHD; reliability modelling and system optimization; finite volume, finite element, and boundary element procedures; modelling of inventory, industrial, manufacturing and logistics systems for viable decision making; civil engineering systems and structures; mineral and energy resources; relevant software engineering issues associated with CAD and CAE; and materials and metallurgical engineering. Applied Mathematical Modelling is primarily interested in papers developing increased insights into real-world problems through novel mathematical modelling, novel applications or a combination of these. Papers employing existing numerical techniques must demonstrate sufficient novelty in the solution of practical problems. Papers on fuzzy logic in decision-making or purely financial mathematics are normally not considered. Research on fractional differential equations, bifurcation, and numerical methods needs to include practical examples. Population dynamics must solve realistic scenarios. Papers in the area of logistics and business modelling should demonstrate meaningful managerial insight. Submissions with no real-world application will not be considered.
期刊最新文献
Modelling the dynamics of ballastless railway tracks on unsaturated subgrade Editorial Board A phase-field-based concurrent topology optimization method for multi-scale structures A novel method for calculating the ultimate bearing capacity of in-service RC arch bridges using sectional constitutive relation Intelligent vehicle path tracking coordinated optimization based on dual-steering cooperative game with fault-tolerant function
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1