Zhoumei Xu, Fukai Chu, Chuanshen Wang, Xin Wang, Yanbei Hou, Weizhao Hu, Lei Song
{"title":"制备 2D/2D g-C3N4@ZnTDA 纳米片催化剂,用于高效降解 2,4-二溴苯酚并改善聚氨酯泡沫的阻燃性能","authors":"Zhoumei Xu, Fukai Chu, Chuanshen Wang, Xin Wang, Yanbei Hou, Weizhao Hu, Lei Song","doi":"10.1016/j.susmat.2024.e01154","DOIUrl":null,"url":null,"abstract":"<div><div>High charge separation and transfer efficiency are considered as key factors of photocatalysts in wastewater treatment applications. In this work, a high performance photocatalyst g-C<sub>3</sub>N<sub>4</sub>@ZnTDA was designed and applied through a facile solvothermal strategy. The microstructural, morphological, physicochemical, and photoelectrochemical properties of g-C<sub>3</sub>N<sub>4</sub>@ZnTDA were fully characterized. The photocatalytic activity of g-C<sub>3</sub>N<sub>4</sub>@ZnTDA nanoparticles under visible light source in degrading the 2,4-dibromophenol(2,4-dB) contaminants was also successfully studied. Additionally, the g-C<sub>3</sub>N<sub>4</sub>@ZnTDA composite demonstrates easy operation and good regeneration ability, making it highly promising for the efficient removal of phenolic pollutants from wastewater. Besides, a novel reutilization method for used catalyst as flame retardant and for PU foams was successfully testified. The MCN-3 as a fire-safety coating could reduce the heat release and improve flame retardancy of PU composites. This work opens a new window for valuable inspiration and structural design of reutilized MOF composites.</div></div>","PeriodicalId":22097,"journal":{"name":"Sustainable Materials and Technologies","volume":"42 ","pages":"Article e01154"},"PeriodicalIF":8.6000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fabrication of a 2D/2D g-C3N4@ZnTDA nanosheets catalyst for highly efficient degradation of 2,4-dibromophenol and improved flame retardancy of polyurethane foam\",\"authors\":\"Zhoumei Xu, Fukai Chu, Chuanshen Wang, Xin Wang, Yanbei Hou, Weizhao Hu, Lei Song\",\"doi\":\"10.1016/j.susmat.2024.e01154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>High charge separation and transfer efficiency are considered as key factors of photocatalysts in wastewater treatment applications. In this work, a high performance photocatalyst g-C<sub>3</sub>N<sub>4</sub>@ZnTDA was designed and applied through a facile solvothermal strategy. The microstructural, morphological, physicochemical, and photoelectrochemical properties of g-C<sub>3</sub>N<sub>4</sub>@ZnTDA were fully characterized. The photocatalytic activity of g-C<sub>3</sub>N<sub>4</sub>@ZnTDA nanoparticles under visible light source in degrading the 2,4-dibromophenol(2,4-dB) contaminants was also successfully studied. Additionally, the g-C<sub>3</sub>N<sub>4</sub>@ZnTDA composite demonstrates easy operation and good regeneration ability, making it highly promising for the efficient removal of phenolic pollutants from wastewater. Besides, a novel reutilization method for used catalyst as flame retardant and for PU foams was successfully testified. The MCN-3 as a fire-safety coating could reduce the heat release and improve flame retardancy of PU composites. This work opens a new window for valuable inspiration and structural design of reutilized MOF composites.</div></div>\",\"PeriodicalId\":22097,\"journal\":{\"name\":\"Sustainable Materials and Technologies\",\"volume\":\"42 \",\"pages\":\"Article e01154\"},\"PeriodicalIF\":8.6000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sustainable Materials and Technologies\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214993724003348\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Materials and Technologies","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214993724003348","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Fabrication of a 2D/2D g-C3N4@ZnTDA nanosheets catalyst for highly efficient degradation of 2,4-dibromophenol and improved flame retardancy of polyurethane foam
High charge separation and transfer efficiency are considered as key factors of photocatalysts in wastewater treatment applications. In this work, a high performance photocatalyst g-C3N4@ZnTDA was designed and applied through a facile solvothermal strategy. The microstructural, morphological, physicochemical, and photoelectrochemical properties of g-C3N4@ZnTDA were fully characterized. The photocatalytic activity of g-C3N4@ZnTDA nanoparticles under visible light source in degrading the 2,4-dibromophenol(2,4-dB) contaminants was also successfully studied. Additionally, the g-C3N4@ZnTDA composite demonstrates easy operation and good regeneration ability, making it highly promising for the efficient removal of phenolic pollutants from wastewater. Besides, a novel reutilization method for used catalyst as flame retardant and for PU foams was successfully testified. The MCN-3 as a fire-safety coating could reduce the heat release and improve flame retardancy of PU composites. This work opens a new window for valuable inspiration and structural design of reutilized MOF composites.
期刊介绍:
Sustainable Materials and Technologies (SM&T), an international, cross-disciplinary, fully open access journal published by Elsevier, focuses on original full-length research articles and reviews. It covers applied or fundamental science of nano-, micro-, meso-, and macro-scale aspects of materials and technologies for sustainable development. SM&T gives special attention to contributions that bridge the knowledge gap between materials and system designs.