{"title":"连续时间静止过程的混合正交图","authors":"Vicky Fasen-Hartmann, Lea Schenk","doi":"10.1016/j.spa.2024.104501","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we introduce different concepts of Granger causality and contemporaneous correlation for multivariate stationary continuous-time processes to model different dependencies between the component processes. Several equivalent characterisations are given for the different definitions, in particular by orthogonal projections. We then define two mixed graphs based on different definitions of Granger causality and contemporaneous correlation, the (mixed) orthogonality graph and the local (mixed) orthogonality graph. In these graphs, the components of the process are represented by vertices, directed edges between the vertices visualise Granger causal influences and undirected edges visualise contemporaneous correlation between the component processes. Further, we introduce various notions of Markov properties in analogy to Eichler (2012), which relate paths in the graphs to different dependence structures of subprocesses, and we derive sufficient criteria for the (local) orthogonality graph to satisfy them. Finally, as an example, for the popular multivariate continuous-time AR (MCAR) processes, we explicitly characterise the edges in the (local) orthogonality graph by the model parameters.</div></div>","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"179 ","pages":"Article 104501"},"PeriodicalIF":1.1000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mixed orthogonality graphs for continuous-time stationary processes\",\"authors\":\"Vicky Fasen-Hartmann, Lea Schenk\",\"doi\":\"10.1016/j.spa.2024.104501\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we introduce different concepts of Granger causality and contemporaneous correlation for multivariate stationary continuous-time processes to model different dependencies between the component processes. Several equivalent characterisations are given for the different definitions, in particular by orthogonal projections. We then define two mixed graphs based on different definitions of Granger causality and contemporaneous correlation, the (mixed) orthogonality graph and the local (mixed) orthogonality graph. In these graphs, the components of the process are represented by vertices, directed edges between the vertices visualise Granger causal influences and undirected edges visualise contemporaneous correlation between the component processes. Further, we introduce various notions of Markov properties in analogy to Eichler (2012), which relate paths in the graphs to different dependence structures of subprocesses, and we derive sufficient criteria for the (local) orthogonality graph to satisfy them. Finally, as an example, for the popular multivariate continuous-time AR (MCAR) processes, we explicitly characterise the edges in the (local) orthogonality graph by the model parameters.</div></div>\",\"PeriodicalId\":51160,\"journal\":{\"name\":\"Stochastic Processes and their Applications\",\"volume\":\"179 \",\"pages\":\"Article 104501\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stochastic Processes and their Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304414924002096\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Processes and their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304414924002096","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Mixed orthogonality graphs for continuous-time stationary processes
In this paper, we introduce different concepts of Granger causality and contemporaneous correlation for multivariate stationary continuous-time processes to model different dependencies between the component processes. Several equivalent characterisations are given for the different definitions, in particular by orthogonal projections. We then define two mixed graphs based on different definitions of Granger causality and contemporaneous correlation, the (mixed) orthogonality graph and the local (mixed) orthogonality graph. In these graphs, the components of the process are represented by vertices, directed edges between the vertices visualise Granger causal influences and undirected edges visualise contemporaneous correlation between the component processes. Further, we introduce various notions of Markov properties in analogy to Eichler (2012), which relate paths in the graphs to different dependence structures of subprocesses, and we derive sufficient criteria for the (local) orthogonality graph to satisfy them. Finally, as an example, for the popular multivariate continuous-time AR (MCAR) processes, we explicitly characterise the edges in the (local) orthogonality graph by the model parameters.
期刊介绍:
Stochastic Processes and their Applications publishes papers on the theory and applications of stochastic processes. It is concerned with concepts and techniques, and is oriented towards a broad spectrum of mathematical, scientific and engineering interests.
Characterization, structural properties, inference and control of stochastic processes are covered. The journal is exacting and scholarly in its standards. Every effort is made to promote innovation, vitality, and communication between disciplines. All papers are refereed.