在超重力增强分离条件下从废铝屑中可持续回收纯铝:一种清洁工艺

IF 8.6 2区 工程技术 Q1 ENERGY & FUELS Sustainable Materials and Technologies Pub Date : 2024-10-16 DOI:10.1016/j.susmat.2024.e01148
Bolin Sun, Lei Guo, Zhe Wang, Xi Lan, Zhancheng Guo
{"title":"在超重力增强分离条件下从废铝屑中可持续回收纯铝:一种清洁工艺","authors":"Bolin Sun,&nbsp;Lei Guo,&nbsp;Zhe Wang,&nbsp;Xi Lan,&nbsp;Zhancheng Guo","doi":"10.1016/j.susmat.2024.e01148","DOIUrl":null,"url":null,"abstract":"<div><div>Large quantities of chips containing high levels of aluminum are always inevitably produced during machining process of aluminum products, which is a valuable renewable resource. In this paper, an environmental-friendly method for direct and continuous recovery of same-level recycled Al from waste chips under supergravity-induced was proposed. The oxide film covering the surface of the molten Al-chips was easily disrupted under super-gravity, and subsequently almost all of Al melt detached from the oxide film and flowed rapidly through the microporous ceramic foam filter, with a yield ratio of more than 97 %. During this process, all fine broken oxide-film particles and large amounts of primary iron-rich particles in the melt were captured in the complex channels of the filter, resulting in clean 1xxx series recycled Al with free inclusions and impurity iron content of less than 0.28 wt%. In addition, a sustainable process and a continuous centrifugal unit for recycling aluminum chips were designed, the economic and environmental advantages of which demonstrate the feasibility of sustainable regeneration of aluminum chip resources on an industrial scale via supergravity technique.</div></div>","PeriodicalId":22097,"journal":{"name":"Sustainable Materials and Technologies","volume":"42 ","pages":"Article e01148"},"PeriodicalIF":8.6000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sustainable recycling of pure aluminum from waste chips under supergravity-enhanced separation: A cleaning process\",\"authors\":\"Bolin Sun,&nbsp;Lei Guo,&nbsp;Zhe Wang,&nbsp;Xi Lan,&nbsp;Zhancheng Guo\",\"doi\":\"10.1016/j.susmat.2024.e01148\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Large quantities of chips containing high levels of aluminum are always inevitably produced during machining process of aluminum products, which is a valuable renewable resource. In this paper, an environmental-friendly method for direct and continuous recovery of same-level recycled Al from waste chips under supergravity-induced was proposed. The oxide film covering the surface of the molten Al-chips was easily disrupted under super-gravity, and subsequently almost all of Al melt detached from the oxide film and flowed rapidly through the microporous ceramic foam filter, with a yield ratio of more than 97 %. During this process, all fine broken oxide-film particles and large amounts of primary iron-rich particles in the melt were captured in the complex channels of the filter, resulting in clean 1xxx series recycled Al with free inclusions and impurity iron content of less than 0.28 wt%. In addition, a sustainable process and a continuous centrifugal unit for recycling aluminum chips were designed, the economic and environmental advantages of which demonstrate the feasibility of sustainable regeneration of aluminum chip resources on an industrial scale via supergravity technique.</div></div>\",\"PeriodicalId\":22097,\"journal\":{\"name\":\"Sustainable Materials and Technologies\",\"volume\":\"42 \",\"pages\":\"Article e01148\"},\"PeriodicalIF\":8.6000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sustainable Materials and Technologies\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214993724003282\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Materials and Technologies","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214993724003282","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

铝是一种宝贵的可再生资源,在铝制品的加工过程中,不可避免地会产生大量含铝量较高的切屑。本文提出了一种在超重力诱导下从废铝屑中直接连续回收同级再生铝的环保方法。在超重力作用下,覆盖在熔融铝屑表面的氧化膜很容易被破坏,随后几乎所有的铝熔体都脱离了氧化膜,迅速流经微孔陶瓷泡沫过滤器,产率超过 97%。在此过程中,熔体中所有细小的破碎氧化膜颗粒和大量富含铁的原生颗粒都被捕获到过滤器的复杂通道中,从而得到了干净的 1xxx 系列再生铝,其中不含夹杂物,杂质铁含量低于 0.28 wt%。此外,还设计了一种用于回收铝屑的可持续工艺和连续离心装置,其经济和环境优势证明了通过超重力技术在工业规模上实现铝屑资源可持续再生的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sustainable recycling of pure aluminum from waste chips under supergravity-enhanced separation: A cleaning process
Large quantities of chips containing high levels of aluminum are always inevitably produced during machining process of aluminum products, which is a valuable renewable resource. In this paper, an environmental-friendly method for direct and continuous recovery of same-level recycled Al from waste chips under supergravity-induced was proposed. The oxide film covering the surface of the molten Al-chips was easily disrupted under super-gravity, and subsequently almost all of Al melt detached from the oxide film and flowed rapidly through the microporous ceramic foam filter, with a yield ratio of more than 97 %. During this process, all fine broken oxide-film particles and large amounts of primary iron-rich particles in the melt were captured in the complex channels of the filter, resulting in clean 1xxx series recycled Al with free inclusions and impurity iron content of less than 0.28 wt%. In addition, a sustainable process and a continuous centrifugal unit for recycling aluminum chips were designed, the economic and environmental advantages of which demonstrate the feasibility of sustainable regeneration of aluminum chip resources on an industrial scale via supergravity technique.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Sustainable Materials and Technologies
Sustainable Materials and Technologies Energy-Renewable Energy, Sustainability and the Environment
CiteScore
13.40
自引率
4.20%
发文量
158
审稿时长
45 days
期刊介绍: Sustainable Materials and Technologies (SM&T), an international, cross-disciplinary, fully open access journal published by Elsevier, focuses on original full-length research articles and reviews. It covers applied or fundamental science of nano-, micro-, meso-, and macro-scale aspects of materials and technologies for sustainable development. SM&T gives special attention to contributions that bridge the knowledge gap between materials and system designs.
期刊最新文献
3D wet-electrospun “branch leaf” graphene oxide polycaprolactone fibers structure for enhancing oil-water separation treatment performance in a multi-scale design Amino-acid-functionalized methanesulfonate ionic liquids as effective and reusable catalysts for oleic acid esterification Biochar-supported Co(OH)2 nanosheets activated persulfate: Enhanced removal of ciprofloxacin and membrane purification Development of electrosprayed assisted shellac-MOF particle coated paper for food packaging and its environmental impacts Enhanced aqueous photocatalytic selective oxidation of HMF using simulated sunlight: Comparison of the performance of different photocatalysts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1