基于车载视觉的推土机操作周期自动识别与时间动作检测

IF 8 1区 工程技术 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Advanced Engineering Informatics Pub Date : 2024-10-01 DOI:10.1016/j.aei.2024.102899
Cheng Zhou , Yuxiang Wang , Ke You , Rubin Wang
{"title":"基于车载视觉的推土机操作周期自动识别与时间动作检测","authors":"Cheng Zhou ,&nbsp;Yuxiang Wang ,&nbsp;Ke You ,&nbsp;Rubin Wang","doi":"10.1016/j.aei.2024.102899","DOIUrl":null,"url":null,"abstract":"<div><div>Automated monitoring of bulldozer operation cycles is crucial for efficient productivity assessment and precise construction management. Harsh earthwork environments and complex, variable operation processes present challenges for identifying these cycles. To address this issue, we developed a multiscale temporal feature fusion and dual attention mechanism-based temporal action detection model (FDA-AFSD) for the automatic identification of bulldozer operation cycles from in to vehicle vision. This model enhances long-term sequence modeling, key temporal information learning, and precise action boundary identification through its multiscale temporal feature fusion structure, dual attention mechanism module, and scalable granularity perception (SGP) layer. In tests for earth levelling and mine edge dumping operations, the average detection accuracy (mAP) for bulldozer operation cycles reached 90.9%. Furthermore, under various adverse weather conditions and diverse construction processes, the model maintained stable and excellent detection capabilities, demonstrating its feasibility and practical application value.</div></div>","PeriodicalId":50941,"journal":{"name":"Advanced Engineering Informatics","volume":"62 ","pages":"Article 102899"},"PeriodicalIF":8.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In-vehicle vision-based automatic identification of bulldozer operation cycles with temporal action detection\",\"authors\":\"Cheng Zhou ,&nbsp;Yuxiang Wang ,&nbsp;Ke You ,&nbsp;Rubin Wang\",\"doi\":\"10.1016/j.aei.2024.102899\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Automated monitoring of bulldozer operation cycles is crucial for efficient productivity assessment and precise construction management. Harsh earthwork environments and complex, variable operation processes present challenges for identifying these cycles. To address this issue, we developed a multiscale temporal feature fusion and dual attention mechanism-based temporal action detection model (FDA-AFSD) for the automatic identification of bulldozer operation cycles from in to vehicle vision. This model enhances long-term sequence modeling, key temporal information learning, and precise action boundary identification through its multiscale temporal feature fusion structure, dual attention mechanism module, and scalable granularity perception (SGP) layer. In tests for earth levelling and mine edge dumping operations, the average detection accuracy (mAP) for bulldozer operation cycles reached 90.9%. Furthermore, under various adverse weather conditions and diverse construction processes, the model maintained stable and excellent detection capabilities, demonstrating its feasibility and practical application value.</div></div>\",\"PeriodicalId\":50941,\"journal\":{\"name\":\"Advanced Engineering Informatics\",\"volume\":\"62 \",\"pages\":\"Article 102899\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Engineering Informatics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1474034624005500\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Engineering Informatics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1474034624005500","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

推土机作业周期的自动监控对于高效的生产率评估和精确的施工管理至关重要。恶劣的土方工程环境和复杂多变的操作过程给识别这些周期带来了挑战。为解决这一问题,我们开发了一种多尺度时间特征融合和基于双重注意机制的时间动作检测模型(FDA-AFSD),用于从车内视觉到车外视觉自动识别推土机的作业周期。该模型通过多尺度时空特征融合结构、双注意机制模块和可扩展粒度感知(SGP)层,增强了长期序列建模、关键时空信息学习和精确动作边界识别能力。在土方平整和矿边倾倒作业测试中,推土机作业周期的平均检测精度(mAP)达到 90.9%。此外,在各种恶劣的天气条件和多样化的施工过程中,该模型都保持了稳定和出色的检测能力,证明了其可行性和实际应用价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
In-vehicle vision-based automatic identification of bulldozer operation cycles with temporal action detection
Automated monitoring of bulldozer operation cycles is crucial for efficient productivity assessment and precise construction management. Harsh earthwork environments and complex, variable operation processes present challenges for identifying these cycles. To address this issue, we developed a multiscale temporal feature fusion and dual attention mechanism-based temporal action detection model (FDA-AFSD) for the automatic identification of bulldozer operation cycles from in to vehicle vision. This model enhances long-term sequence modeling, key temporal information learning, and precise action boundary identification through its multiscale temporal feature fusion structure, dual attention mechanism module, and scalable granularity perception (SGP) layer. In tests for earth levelling and mine edge dumping operations, the average detection accuracy (mAP) for bulldozer operation cycles reached 90.9%. Furthermore, under various adverse weather conditions and diverse construction processes, the model maintained stable and excellent detection capabilities, demonstrating its feasibility and practical application value.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Engineering Informatics
Advanced Engineering Informatics 工程技术-工程:综合
CiteScore
12.40
自引率
18.20%
发文量
292
审稿时长
45 days
期刊介绍: Advanced Engineering Informatics is an international Journal that solicits research papers with an emphasis on 'knowledge' and 'engineering applications'. The Journal seeks original papers that report progress in applying methods of engineering informatics. These papers should have engineering relevance and help provide a scientific base for more reliable, spontaneous, and creative engineering decision-making. Additionally, papers should demonstrate the science of supporting knowledge-intensive engineering tasks and validate the generality, power, and scalability of new methods through rigorous evaluation, preferably both qualitatively and quantitatively. Abstracting and indexing for Advanced Engineering Informatics include Science Citation Index Expanded, Scopus and INSPEC.
期刊最新文献
Multi-graph attention temporal convolutional network-based radius prediction in three-roller bending of thin-walled parts A stacked graph neural network with self-exciting process for robotic cognitive strategy reasoning in proactive human-robot collaborative assembly Evaluation of Augmented Reality instructions based on initial and dynamic assembly tolerance allocation schemes in precise manual assembly UAV applications in intelligent traffic: RGBT image feature registration and complementary perception CMPSO: A novel co-evolutionary multigroup particle swarm optimization for multi-mission UAVs path planning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1