{"title":"西非克拉通东南部 Birimian 地层中古新生代交替带和盆地的地壳演化","authors":"","doi":"10.1016/j.jafrearsci.2024.105449","DOIUrl":null,"url":null,"abstract":"<div><div>We present a comprehensive review of available geochemical, geochronological and isotopic data on granitoids from the Paleoproterozoic Birimian terrane of Ghana, aimed at providing an in-depth understanding of the geodynamic evolution of southeastern West African Craton. The focus is on plutonic magmatism, crustal recycling and tectonic setting of the granitoids. The granitoids are mainly TTG suites, calc-alkaline granites, diorites, monzonites, two-mica granites and leucogranites. They are characterized by enrichments in LILE and LREE relative to HREE and HFSE. Their variable positive and negative Eu and Sr anomalies and depletions in Nb-Ta and Ti suggest the presence of residual minerals like hornblende and Fe-Ti oxides (e.g., rutile and ilmenite). The plutons probably formed by partial melting of hydrous basaltic/mafic crust metasomatized by slab-derived melts at different depths. The ɛHf (−14.5 to +7.6) and εNd (−5.3 to +3.5) values and Nd model ages (2.21–2.53 Ga) indicate their crystallization from juvenile magmas derived from a depleted mantle with significant recycling of older crustal material. The older (≥2200 Ma) and younger (<2100 Ma) ages recorded in both belt- and basin-type granitoids indicate that magmatism in both types was contemporaneous. Nonetheless, the basins recorded younger peak emplacement ages compared to adjacent belts. The presence of inherited older zircon grains (Archean zircon cores?), is widespread in southeastern WAC. The granitoids formed in a continental arc setting via subduction–accretion processes. Furthermore, the magmatic time-span is more prolonged in southern Ghana, with the sedimentary basins recording the longest intervals of magma emplacement. The sub-chondritic ɛHf data and Hf model ages strongly suggest the existence of Neoarchean to Mesoarchean crustal material in eastern Ghana during the Birimian crust formation. We propose that the subduction-accretion processes during the Paleoproterozoic Eburnean orogeny in the WAC contributed to the formation of the Columbia supercontinent in the Late Paleoproterozoic-Mesoproterozoic.</div></div>","PeriodicalId":14874,"journal":{"name":"Journal of African Earth Sciences","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Crustal evolution of alternating Paleoproterozoic belts and basins in the Birimian terrane in southeastern West African Craton\",\"authors\":\"\",\"doi\":\"10.1016/j.jafrearsci.2024.105449\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We present a comprehensive review of available geochemical, geochronological and isotopic data on granitoids from the Paleoproterozoic Birimian terrane of Ghana, aimed at providing an in-depth understanding of the geodynamic evolution of southeastern West African Craton. The focus is on plutonic magmatism, crustal recycling and tectonic setting of the granitoids. The granitoids are mainly TTG suites, calc-alkaline granites, diorites, monzonites, two-mica granites and leucogranites. They are characterized by enrichments in LILE and LREE relative to HREE and HFSE. Their variable positive and negative Eu and Sr anomalies and depletions in Nb-Ta and Ti suggest the presence of residual minerals like hornblende and Fe-Ti oxides (e.g., rutile and ilmenite). The plutons probably formed by partial melting of hydrous basaltic/mafic crust metasomatized by slab-derived melts at different depths. The ɛHf (−14.5 to +7.6) and εNd (−5.3 to +3.5) values and Nd model ages (2.21–2.53 Ga) indicate their crystallization from juvenile magmas derived from a depleted mantle with significant recycling of older crustal material. The older (≥2200 Ma) and younger (<2100 Ma) ages recorded in both belt- and basin-type granitoids indicate that magmatism in both types was contemporaneous. Nonetheless, the basins recorded younger peak emplacement ages compared to adjacent belts. The presence of inherited older zircon grains (Archean zircon cores?), is widespread in southeastern WAC. The granitoids formed in a continental arc setting via subduction–accretion processes. Furthermore, the magmatic time-span is more prolonged in southern Ghana, with the sedimentary basins recording the longest intervals of magma emplacement. The sub-chondritic ɛHf data and Hf model ages strongly suggest the existence of Neoarchean to Mesoarchean crustal material in eastern Ghana during the Birimian crust formation. We propose that the subduction-accretion processes during the Paleoproterozoic Eburnean orogeny in the WAC contributed to the formation of the Columbia supercontinent in the Late Paleoproterozoic-Mesoproterozoic.</div></div>\",\"PeriodicalId\":14874,\"journal\":{\"name\":\"Journal of African Earth Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of African Earth Sciences\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1464343X24002826\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of African Earth Sciences","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1464343X24002826","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
我们全面综述了加纳古新生代比里勉岩系花岗岩的地球化学、地质年代和同位素数据,旨在深入了解西非克拉通东南部的地球动力演化。研究重点是花岗岩的构造岩浆作用、地壳再循环和构造背景。花岗岩主要是TTG岩套、钙碱性花岗岩、闪长岩、单斜岩、双云母花岗岩和白花岗岩。相对于 HREE 和 HFSE,它们的特点是 LILE 和 LREE 富集。它们的 Eu 和 Sr 异常值有正有负,Nb-Ta 和 Ti 异常值较低,表明存在角闪石和铁钛氧化物(如金红石和钛铁矿)等残留矿物。这些深成岩可能是由含水玄武岩/闪长岩地壳在不同深度被板块衍生熔体变质部分熔化形成的。ɛHf(-14.5 至 +7.6)和εNd(-5.3 至 +3.5)值以及 Nd 模型年龄(2.21-2.53 Ga)表明,它们是由来自贫化地幔的幼年岩浆结晶而成,其中大量回收了较老的地壳物质。岩带型和岩盆型花岗岩中记录的较老(≥2200Ma)和较年轻(<2100Ma)的年龄表明,这两种类型的岩浆活动是同时发生的。尽管如此,与邻近的岩带相比,盆地记录到的峰值成岩年龄更年轻。在西澳大利亚州东南部,普遍存在继承下来的较古老的锆石颗粒(Archean锆石岩芯?这些花岗岩是在大陆弧环境中通过俯冲-成岩过程形成的。此外,加纳南部的岩浆时间跨度较长,沉积盆地记录的岩浆喷发时间间隔最长。亚软玉ɛHf数据和Hf模型年龄有力地表明,在比里米亚地壳形成期间,加纳东部存在新元古代至中元古代地壳物质。我们认为,西太平洋古生代埃伯恩造山运动期间的俯冲-增生过程促成了晚古生代-中古生代哥伦比亚超大陆的形成。
Crustal evolution of alternating Paleoproterozoic belts and basins in the Birimian terrane in southeastern West African Craton
We present a comprehensive review of available geochemical, geochronological and isotopic data on granitoids from the Paleoproterozoic Birimian terrane of Ghana, aimed at providing an in-depth understanding of the geodynamic evolution of southeastern West African Craton. The focus is on plutonic magmatism, crustal recycling and tectonic setting of the granitoids. The granitoids are mainly TTG suites, calc-alkaline granites, diorites, monzonites, two-mica granites and leucogranites. They are characterized by enrichments in LILE and LREE relative to HREE and HFSE. Their variable positive and negative Eu and Sr anomalies and depletions in Nb-Ta and Ti suggest the presence of residual minerals like hornblende and Fe-Ti oxides (e.g., rutile and ilmenite). The plutons probably formed by partial melting of hydrous basaltic/mafic crust metasomatized by slab-derived melts at different depths. The ɛHf (−14.5 to +7.6) and εNd (−5.3 to +3.5) values and Nd model ages (2.21–2.53 Ga) indicate their crystallization from juvenile magmas derived from a depleted mantle with significant recycling of older crustal material. The older (≥2200 Ma) and younger (<2100 Ma) ages recorded in both belt- and basin-type granitoids indicate that magmatism in both types was contemporaneous. Nonetheless, the basins recorded younger peak emplacement ages compared to adjacent belts. The presence of inherited older zircon grains (Archean zircon cores?), is widespread in southeastern WAC. The granitoids formed in a continental arc setting via subduction–accretion processes. Furthermore, the magmatic time-span is more prolonged in southern Ghana, with the sedimentary basins recording the longest intervals of magma emplacement. The sub-chondritic ɛHf data and Hf model ages strongly suggest the existence of Neoarchean to Mesoarchean crustal material in eastern Ghana during the Birimian crust formation. We propose that the subduction-accretion processes during the Paleoproterozoic Eburnean orogeny in the WAC contributed to the formation of the Columbia supercontinent in the Late Paleoproterozoic-Mesoproterozoic.
期刊介绍:
The Journal of African Earth Sciences sees itself as the prime geological journal for all aspects of the Earth Sciences about the African plate. Papers dealing with peripheral areas are welcome if they demonstrate a tight link with Africa.
The Journal publishes high quality, peer-reviewed scientific papers. It is devoted primarily to research papers but short communications relating to new developments of broad interest, reviews and book reviews will also be considered. Papers must have international appeal and should present work of more regional than local significance and dealing with well identified and justified scientific questions. Specialised technical papers, analytical or exploration reports must be avoided. Papers on applied geology should preferably be linked to such core disciplines and must be addressed to a more general geoscientific audience.