WANG Yuning , GONG Jiesong , ZHOU Jiabin , CHEN Zhiyuan , TIAN Dong , NA Wei , GAO Wengui
{"title":"Rh16/In2O3 催化剂氢化 CO2 合成甲醇的机理:密度泛函理论与微动力学模型的结合研究","authors":"WANG Yuning , GONG Jiesong , ZHOU Jiabin , CHEN Zhiyuan , TIAN Dong , NA Wei , GAO Wengui","doi":"10.1016/S1872-5813(24)60460-3","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, the hydrogenation of carbon dioxide (CO<sub>2</sub>) to methanol (CH<sub>3</sub>OH) over Rh<sub>16</sub>/In<sub>2</sub>O<sub>3</sub> catalyst was studied through Density Functional Theory (DFT) and microdynamics modeling. The spontaneous dissociation mechanisms of H<sub>2</sub> and CO<sub>2</sub> adsorption at the Rh<sub>16</sub>/In<sub>2</sub>O<sub>3</sub> interface were investigated. The oxygen vacancies in In<sub>2</sub>O<sub>3</sub> enhanced the adsorption process. Bader charge analysis revealed a marginal positive charge on Rh<sub>16</sub>, elucidating the critical insights into the electronic characteristics and catalytic activity. The study established the RWGS+CO-Hydro pathway as the predominant mechanism for methanol synthesis, characterized by a sequential transformation of intermediates: CO<sub>2</sub>*→COOH*→CO*+OH*→HCO*→CH<sub>2</sub>O*→CH<sub>2</sub>OH*→CH<sub>3</sub>OH*. Furthermore, Degree of Reaction Rate Control (DRC) analysis conducted in the range of 373–873 K and 10<sup>–2</sup> to 10<sup>3</sup> bar identified two principal kinetic phenomena: at lower temperature and higher pressure, the conversion of CO* + H* to HCO* significantly impacted the overall reaction rate. Conversely, at higher temperature, the step from CH<sub>2</sub>O* + H* to CH<sub>3</sub>O* was dominate.</div></div>","PeriodicalId":15956,"journal":{"name":"燃料化学学报","volume":"52 10","pages":"Pages 1462-1473"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanism of methanol synthesis from CO2 hydrogenation over Rh16/In2O3 catalysts: A combined study on density functional theory and microkinetic modeling\",\"authors\":\"WANG Yuning , GONG Jiesong , ZHOU Jiabin , CHEN Zhiyuan , TIAN Dong , NA Wei , GAO Wengui\",\"doi\":\"10.1016/S1872-5813(24)60460-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this study, the hydrogenation of carbon dioxide (CO<sub>2</sub>) to methanol (CH<sub>3</sub>OH) over Rh<sub>16</sub>/In<sub>2</sub>O<sub>3</sub> catalyst was studied through Density Functional Theory (DFT) and microdynamics modeling. The spontaneous dissociation mechanisms of H<sub>2</sub> and CO<sub>2</sub> adsorption at the Rh<sub>16</sub>/In<sub>2</sub>O<sub>3</sub> interface were investigated. The oxygen vacancies in In<sub>2</sub>O<sub>3</sub> enhanced the adsorption process. Bader charge analysis revealed a marginal positive charge on Rh<sub>16</sub>, elucidating the critical insights into the electronic characteristics and catalytic activity. The study established the RWGS+CO-Hydro pathway as the predominant mechanism for methanol synthesis, characterized by a sequential transformation of intermediates: CO<sub>2</sub>*→COOH*→CO*+OH*→HCO*→CH<sub>2</sub>O*→CH<sub>2</sub>OH*→CH<sub>3</sub>OH*. Furthermore, Degree of Reaction Rate Control (DRC) analysis conducted in the range of 373–873 K and 10<sup>–2</sup> to 10<sup>3</sup> bar identified two principal kinetic phenomena: at lower temperature and higher pressure, the conversion of CO* + H* to HCO* significantly impacted the overall reaction rate. Conversely, at higher temperature, the step from CH<sub>2</sub>O* + H* to CH<sub>3</sub>O* was dominate.</div></div>\",\"PeriodicalId\":15956,\"journal\":{\"name\":\"燃料化学学报\",\"volume\":\"52 10\",\"pages\":\"Pages 1462-1473\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"燃料化学学报\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1872581324604603\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Energy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"燃料化学学报","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872581324604603","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Energy","Score":null,"Total":0}
Mechanism of methanol synthesis from CO2 hydrogenation over Rh16/In2O3 catalysts: A combined study on density functional theory and microkinetic modeling
In this study, the hydrogenation of carbon dioxide (CO2) to methanol (CH3OH) over Rh16/In2O3 catalyst was studied through Density Functional Theory (DFT) and microdynamics modeling. The spontaneous dissociation mechanisms of H2 and CO2 adsorption at the Rh16/In2O3 interface were investigated. The oxygen vacancies in In2O3 enhanced the adsorption process. Bader charge analysis revealed a marginal positive charge on Rh16, elucidating the critical insights into the electronic characteristics and catalytic activity. The study established the RWGS+CO-Hydro pathway as the predominant mechanism for methanol synthesis, characterized by a sequential transformation of intermediates: CO2*→COOH*→CO*+OH*→HCO*→CH2O*→CH2OH*→CH3OH*. Furthermore, Degree of Reaction Rate Control (DRC) analysis conducted in the range of 373–873 K and 10–2 to 103 bar identified two principal kinetic phenomena: at lower temperature and higher pressure, the conversion of CO* + H* to HCO* significantly impacted the overall reaction rate. Conversely, at higher temperature, the step from CH2O* + H* to CH3O* was dominate.
期刊介绍:
Journal of Fuel Chemistry and Technology (Ranliao Huaxue Xuebao) is a Chinese Academy of Sciences(CAS) journal started in 1956, sponsored by the Chinese Chemical Society and the Institute of Coal Chemistry, Chinese Academy of Sciences(CAS). The journal is published bimonthly by Science Press in China and widely distributed in about 20 countries. Journal of Fuel Chemistry and Technology publishes reports of both basic and applied research in the chemistry and chemical engineering of many energy sources, including that involved in the nature, processing and utilization of coal, petroleum, oil shale, natural gas, biomass and synfuels, as well as related subjects of increasing interest such as C1 chemistry, pollutions control and new catalytic materials. Types of publications include original research articles, short communications, research notes and reviews. Both domestic and international contributors are welcome. Manuscripts written in Chinese or English will be accepted. Additional English titles, abstracts and key words should be included in Chinese manuscripts. All manuscripts are subject to critical review by the editorial committee, which is composed of about 10 foreign and 50 Chinese experts in fuel science. Journal of Fuel Chemistry and Technology has been a source of primary research work in fuel chemistry as a Chinese core scientific periodical.