{"title":"提取自 Cr-MIL-101 的纳米 Cr2O3 用于正己烷的高效脱氢反应","authors":"LI Xiuyi, SHEN Haowei, XU Jiale, LI Chunyi","doi":"10.1016/S1872-5813(24)60458-5","DOIUrl":null,"url":null,"abstract":"<div><div>Nano Cr<sub>2</sub>O<sub>3</sub> (<em>n</em>-Cr<sub>2</sub>O<sub>3</sub>) was prepared by the thermolysis of the mesoporous Cr-MIL-101, and its catalytic performance for <em>n</em>-hexane dehydrogenation was investigated and compared with Cr<sub>2</sub>O<sub>3</sub> obtained by traditional method. It is found that dehydrogenation of <em>n</em>-hexane on <em>n</em>-Cr<sub>2</sub>O<sub>3</sub> catalyst can produce <em>n</em>-hexenes and benzene efficiently, and the catalytic performance is related to the calcination temperature. The optimal <em>n</em>-hexane conversion can be obtained on <em>n</em>-Cr<sub>2</sub>O<sub>3</sub> calcinated under 600 °C, is 40.6%, and the selectivities to <em>n</em>-hexenes and benzene are 20.1% and 69.3%, respectively. The conversion of <em>n</em>-hexane for <em>n</em>-Cr<sub>2</sub>O<sub>3</sub> catalyst is decreased with calcination temperature increase, while the catalyst stability in dehydrogenation reaction is enhanced. <em>n</em>-Hexane conversion of <em>p</em>-Cr<sub>2</sub>O<sub>3</sub>-1 (obtained by precipitation method) and <em>p</em>-Cr<sub>2</sub>O<sub>3</sub>-2 (calcinating Cr(NO<sub>3</sub>)·9H<sub>2</sub>O directly) catalysts are very low (<7.5%), and their specific activity for <em>n</em>-hexane dehydrogenation are 1.5 and 1.7 g/(m<sup>2</sup>·h) respectively, lower than that of <em>n</em>-Cr<sub>2</sub>O<sub>3</sub>-600 (2.0 g/(m<sup>2</sup>·h)). The results of BET, XRD, TEM and FT-IR reveal that <em>n</em>-Cr<sub>2</sub>O<sub>3</sub> is the nanoparticles with large specific surface area that more dehydrogenation active sites are exposed, while <em>p</em>-Cr<sub>2</sub>O<sub>3</sub> is the large particles with extremely low surface area that few dehydrogenation active sites are presented. By contrast, industrial Cr<sub>2</sub>O<sub>3</sub>/Al<sub>2</sub>O<sub>3</sub> catalyst possesses the highest specific activity of 2.4 g/(m<sup>2</sup>·h) due to the dispersion effect of Al<sub>2</sub>O<sub>3</sub>. Therefore, highly catalytic activity of <em>n</em>-Cr<sub>2</sub>O<sub>3</sub> for <em>n</em>-hexane dehydrogenation is attributed to the unique properties of small particle, large specific surface area and more exposed active sites. This work not only explains the high dehydrogenation activity of nano-Cr<sub>2</sub>O<sub>3</sub> derived by Cr-MIL-101, but also provides guidance for the precise design and synthesis of high-performance CrO<sub><em>x</em></sub>-based catalyst for the dehydrogenation of alkanes.</div></div>","PeriodicalId":15956,"journal":{"name":"燃料化学学报","volume":"52 10","pages":"Pages 1506-1515"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cr-MIL-101 derived nano Cr2O3 for highly efficient dehydrogenation of n-hexane\",\"authors\":\"LI Xiuyi, SHEN Haowei, XU Jiale, LI Chunyi\",\"doi\":\"10.1016/S1872-5813(24)60458-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Nano Cr<sub>2</sub>O<sub>3</sub> (<em>n</em>-Cr<sub>2</sub>O<sub>3</sub>) was prepared by the thermolysis of the mesoporous Cr-MIL-101, and its catalytic performance for <em>n</em>-hexane dehydrogenation was investigated and compared with Cr<sub>2</sub>O<sub>3</sub> obtained by traditional method. It is found that dehydrogenation of <em>n</em>-hexane on <em>n</em>-Cr<sub>2</sub>O<sub>3</sub> catalyst can produce <em>n</em>-hexenes and benzene efficiently, and the catalytic performance is related to the calcination temperature. The optimal <em>n</em>-hexane conversion can be obtained on <em>n</em>-Cr<sub>2</sub>O<sub>3</sub> calcinated under 600 °C, is 40.6%, and the selectivities to <em>n</em>-hexenes and benzene are 20.1% and 69.3%, respectively. The conversion of <em>n</em>-hexane for <em>n</em>-Cr<sub>2</sub>O<sub>3</sub> catalyst is decreased with calcination temperature increase, while the catalyst stability in dehydrogenation reaction is enhanced. <em>n</em>-Hexane conversion of <em>p</em>-Cr<sub>2</sub>O<sub>3</sub>-1 (obtained by precipitation method) and <em>p</em>-Cr<sub>2</sub>O<sub>3</sub>-2 (calcinating Cr(NO<sub>3</sub>)·9H<sub>2</sub>O directly) catalysts are very low (<7.5%), and their specific activity for <em>n</em>-hexane dehydrogenation are 1.5 and 1.7 g/(m<sup>2</sup>·h) respectively, lower than that of <em>n</em>-Cr<sub>2</sub>O<sub>3</sub>-600 (2.0 g/(m<sup>2</sup>·h)). The results of BET, XRD, TEM and FT-IR reveal that <em>n</em>-Cr<sub>2</sub>O<sub>3</sub> is the nanoparticles with large specific surface area that more dehydrogenation active sites are exposed, while <em>p</em>-Cr<sub>2</sub>O<sub>3</sub> is the large particles with extremely low surface area that few dehydrogenation active sites are presented. By contrast, industrial Cr<sub>2</sub>O<sub>3</sub>/Al<sub>2</sub>O<sub>3</sub> catalyst possesses the highest specific activity of 2.4 g/(m<sup>2</sup>·h) due to the dispersion effect of Al<sub>2</sub>O<sub>3</sub>. Therefore, highly catalytic activity of <em>n</em>-Cr<sub>2</sub>O<sub>3</sub> for <em>n</em>-hexane dehydrogenation is attributed to the unique properties of small particle, large specific surface area and more exposed active sites. This work not only explains the high dehydrogenation activity of nano-Cr<sub>2</sub>O<sub>3</sub> derived by Cr-MIL-101, but also provides guidance for the precise design and synthesis of high-performance CrO<sub><em>x</em></sub>-based catalyst for the dehydrogenation of alkanes.</div></div>\",\"PeriodicalId\":15956,\"journal\":{\"name\":\"燃料化学学报\",\"volume\":\"52 10\",\"pages\":\"Pages 1506-1515\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"燃料化学学报\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1872581324604585\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Energy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"燃料化学学报","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872581324604585","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Energy","Score":null,"Total":0}
Cr-MIL-101 derived nano Cr2O3 for highly efficient dehydrogenation of n-hexane
Nano Cr2O3 (n-Cr2O3) was prepared by the thermolysis of the mesoporous Cr-MIL-101, and its catalytic performance for n-hexane dehydrogenation was investigated and compared with Cr2O3 obtained by traditional method. It is found that dehydrogenation of n-hexane on n-Cr2O3 catalyst can produce n-hexenes and benzene efficiently, and the catalytic performance is related to the calcination temperature. The optimal n-hexane conversion can be obtained on n-Cr2O3 calcinated under 600 °C, is 40.6%, and the selectivities to n-hexenes and benzene are 20.1% and 69.3%, respectively. The conversion of n-hexane for n-Cr2O3 catalyst is decreased with calcination temperature increase, while the catalyst stability in dehydrogenation reaction is enhanced. n-Hexane conversion of p-Cr2O3-1 (obtained by precipitation method) and p-Cr2O3-2 (calcinating Cr(NO3)·9H2O directly) catalysts are very low (<7.5%), and their specific activity for n-hexane dehydrogenation are 1.5 and 1.7 g/(m2·h) respectively, lower than that of n-Cr2O3-600 (2.0 g/(m2·h)). The results of BET, XRD, TEM and FT-IR reveal that n-Cr2O3 is the nanoparticles with large specific surface area that more dehydrogenation active sites are exposed, while p-Cr2O3 is the large particles with extremely low surface area that few dehydrogenation active sites are presented. By contrast, industrial Cr2O3/Al2O3 catalyst possesses the highest specific activity of 2.4 g/(m2·h) due to the dispersion effect of Al2O3. Therefore, highly catalytic activity of n-Cr2O3 for n-hexane dehydrogenation is attributed to the unique properties of small particle, large specific surface area and more exposed active sites. This work not only explains the high dehydrogenation activity of nano-Cr2O3 derived by Cr-MIL-101, but also provides guidance for the precise design and synthesis of high-performance CrOx-based catalyst for the dehydrogenation of alkanes.
期刊介绍:
Journal of Fuel Chemistry and Technology (Ranliao Huaxue Xuebao) is a Chinese Academy of Sciences(CAS) journal started in 1956, sponsored by the Chinese Chemical Society and the Institute of Coal Chemistry, Chinese Academy of Sciences(CAS). The journal is published bimonthly by Science Press in China and widely distributed in about 20 countries. Journal of Fuel Chemistry and Technology publishes reports of both basic and applied research in the chemistry and chemical engineering of many energy sources, including that involved in the nature, processing and utilization of coal, petroleum, oil shale, natural gas, biomass and synfuels, as well as related subjects of increasing interest such as C1 chemistry, pollutions control and new catalytic materials. Types of publications include original research articles, short communications, research notes and reviews. Both domestic and international contributors are welcome. Manuscripts written in Chinese or English will be accepted. Additional English titles, abstracts and key words should be included in Chinese manuscripts. All manuscripts are subject to critical review by the editorial committee, which is composed of about 10 foreign and 50 Chinese experts in fuel science. Journal of Fuel Chemistry and Technology has been a source of primary research work in fuel chemistry as a Chinese core scientific periodical.