{"title":"铁生产的去碳化","authors":"Stuart Licht","doi":"10.1016/j.inv.2024.100033","DOIUrl":null,"url":null,"abstract":"<div><div>Today's carbothermal process for producing iron from iron ore has a high carbon footprint causing massive CO<sub>2</sub> emissions into the atmosphere. Alternatives are needed to mitigate the climate change effects of rising CO<sub>2</sub> concentrations. This invention is a low carbon footprint, zero CO<sub>2</sub> emission, alternative iron production process. Iron oxide ore is discovered to be highly soluble in certain molten carbonates, such as lithium carbonate. Iron is produced electrolytically in these molten salts at approximately 750°C by splitting iron oxide into iron metal and oxygen. This is a high efficiency, low energy, low-carbon footprint alternative to the massive CO<sub>2</sub> emissions associated with the conventional iron industry.</div></div>","PeriodicalId":100728,"journal":{"name":"Invention Disclosure","volume":"4 ","pages":"Article 100033"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Decarbonization of iron production\",\"authors\":\"Stuart Licht\",\"doi\":\"10.1016/j.inv.2024.100033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Today's carbothermal process for producing iron from iron ore has a high carbon footprint causing massive CO<sub>2</sub> emissions into the atmosphere. Alternatives are needed to mitigate the climate change effects of rising CO<sub>2</sub> concentrations. This invention is a low carbon footprint, zero CO<sub>2</sub> emission, alternative iron production process. Iron oxide ore is discovered to be highly soluble in certain molten carbonates, such as lithium carbonate. Iron is produced electrolytically in these molten salts at approximately 750°C by splitting iron oxide into iron metal and oxygen. This is a high efficiency, low energy, low-carbon footprint alternative to the massive CO<sub>2</sub> emissions associated with the conventional iron industry.</div></div>\",\"PeriodicalId\":100728,\"journal\":{\"name\":\"Invention Disclosure\",\"volume\":\"4 \",\"pages\":\"Article 100033\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Invention Disclosure\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772444124000144\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Invention Disclosure","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772444124000144","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Today's carbothermal process for producing iron from iron ore has a high carbon footprint causing massive CO2 emissions into the atmosphere. Alternatives are needed to mitigate the climate change effects of rising CO2 concentrations. This invention is a low carbon footprint, zero CO2 emission, alternative iron production process. Iron oxide ore is discovered to be highly soluble in certain molten carbonates, such as lithium carbonate. Iron is produced electrolytically in these molten salts at approximately 750°C by splitting iron oxide into iron metal and oxygen. This is a high efficiency, low energy, low-carbon footprint alternative to the massive CO2 emissions associated with the conventional iron industry.