利用可解释人工智能和肠道微生物群数据检测心血管疾病

Can Duyar , Simone Oliver Senica , Habil Kalkan
{"title":"利用可解释人工智能和肠道微生物群数据检测心血管疾病","authors":"Can Duyar ,&nbsp;Simone Oliver Senica ,&nbsp;Habil Kalkan","doi":"10.1016/j.ibmed.2024.100180","DOIUrl":null,"url":null,"abstract":"<div><h3>Purpose:</h3><div>Gut microbiota are defined as the microbial population of the intestines. They include various types of bacteria which can influence and predict the existence or onset of some specific diseases. Therefore, it is a common practice in medicine to analyze the gut microbiota for diagnostic purposes by analyzing certain measurable biochemical features associated with the disease under investigation. However, the evaluation of all the data collected from the gut microbiota is a labor-intensive process. Artificial Intelligence (AI) may be a helpful tool to identify the hidden patterns in gut microbiota for the detection of disease and other classification problems.</div></div><div><h3>Methods:</h3><div>In this study, we propose a deep neural model based on a one-dimensional convolutional neural network (1D-CNN) to detect cardiovascular disease using bacterial taxonomy and OTU (Operational Taxonomic Unit) table data. The developed AI method is compared to classical machine learning algorithms, regression, boosting algorithms and a deep model, Tabular Network (TabNet), developed for tabular data and obtained outperforming classification results.</div></div><div><h3>Results:</h3><div>According to AUC (Area Under Curve) values, boosting and regression methods outperformed the classical machine learning methods. However, the highest value of 97.09 AUC was obtained with the developed 1D-CNN model by using bacterial taxonomy data even with less then expected number of samples. Using explainable AI, nine bacteria were identified which the models find important for classification.</div></div><div><h3>Conclusion:</h3><div>The proposed method is robust and well adapted to taxonomy data in tabular form. It can be easily adapted to detect other diseases by using taxonomy data. The study also investigated the effect on barcode sequence for the classification, but the result showed that barcode sequences do not contribute to the bacterial taxonomy data for the estimation of CVD disease.</div></div>","PeriodicalId":73399,"journal":{"name":"Intelligence-based medicine","volume":"10 ","pages":"Article 100180"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detection of cardiovascular disease using explainable artificial intelligence and gut microbiota data\",\"authors\":\"Can Duyar ,&nbsp;Simone Oliver Senica ,&nbsp;Habil Kalkan\",\"doi\":\"10.1016/j.ibmed.2024.100180\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Purpose:</h3><div>Gut microbiota are defined as the microbial population of the intestines. They include various types of bacteria which can influence and predict the existence or onset of some specific diseases. Therefore, it is a common practice in medicine to analyze the gut microbiota for diagnostic purposes by analyzing certain measurable biochemical features associated with the disease under investigation. However, the evaluation of all the data collected from the gut microbiota is a labor-intensive process. Artificial Intelligence (AI) may be a helpful tool to identify the hidden patterns in gut microbiota for the detection of disease and other classification problems.</div></div><div><h3>Methods:</h3><div>In this study, we propose a deep neural model based on a one-dimensional convolutional neural network (1D-CNN) to detect cardiovascular disease using bacterial taxonomy and OTU (Operational Taxonomic Unit) table data. The developed AI method is compared to classical machine learning algorithms, regression, boosting algorithms and a deep model, Tabular Network (TabNet), developed for tabular data and obtained outperforming classification results.</div></div><div><h3>Results:</h3><div>According to AUC (Area Under Curve) values, boosting and regression methods outperformed the classical machine learning methods. However, the highest value of 97.09 AUC was obtained with the developed 1D-CNN model by using bacterial taxonomy data even with less then expected number of samples. Using explainable AI, nine bacteria were identified which the models find important for classification.</div></div><div><h3>Conclusion:</h3><div>The proposed method is robust and well adapted to taxonomy data in tabular form. It can be easily adapted to detect other diseases by using taxonomy data. The study also investigated the effect on barcode sequence for the classification, but the result showed that barcode sequences do not contribute to the bacterial taxonomy data for the estimation of CVD disease.</div></div>\",\"PeriodicalId\":73399,\"journal\":{\"name\":\"Intelligence-based medicine\",\"volume\":\"10 \",\"pages\":\"Article 100180\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Intelligence-based medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666521224000474\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligence-based medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666521224000474","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目的:肠道微生物群是指肠道中的微生物种群。它们包括各种类型的细菌,可影响和预测某些特定疾病的存在或发病。因此,医学界通常通过分析与所研究疾病相关的某些可测量生化特征来分析肠道微生物群,从而达到诊断目的。然而,评估从肠道微生物群收集到的所有数据是一个劳动密集型过程。方法:在本研究中,我们提出了一种基于一维卷积神经网络(1D-CNN)的深度神经模型,利用细菌分类学和OTU(操作分类单元)表数据检测心血管疾病。将所开发的人工智能方法与经典机器学习算法、回归算法、提升算法以及针对表格数据开发的深度模型--表格网络(TabNet)进行了比较,得出了优于传统分类方法的结果。然而,在使用细菌分类数据时,即使样本数量少于预期,所开发的 1D-CNN 模型也获得了 97.09 的最高 AUC 值。利用可解释人工智能,确定了模型认为对分类很重要的九种细菌。通过使用分类数据,该方法可轻松用于检测其他疾病。研究还调查了条形码序列对分类的影响,但结果表明,条形码序列对细菌分类数据用于心血管疾病的估计没有帮助。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Detection of cardiovascular disease using explainable artificial intelligence and gut microbiota data

Purpose:

Gut microbiota are defined as the microbial population of the intestines. They include various types of bacteria which can influence and predict the existence or onset of some specific diseases. Therefore, it is a common practice in medicine to analyze the gut microbiota for diagnostic purposes by analyzing certain measurable biochemical features associated with the disease under investigation. However, the evaluation of all the data collected from the gut microbiota is a labor-intensive process. Artificial Intelligence (AI) may be a helpful tool to identify the hidden patterns in gut microbiota for the detection of disease and other classification problems.

Methods:

In this study, we propose a deep neural model based on a one-dimensional convolutional neural network (1D-CNN) to detect cardiovascular disease using bacterial taxonomy and OTU (Operational Taxonomic Unit) table data. The developed AI method is compared to classical machine learning algorithms, regression, boosting algorithms and a deep model, Tabular Network (TabNet), developed for tabular data and obtained outperforming classification results.

Results:

According to AUC (Area Under Curve) values, boosting and regression methods outperformed the classical machine learning methods. However, the highest value of 97.09 AUC was obtained with the developed 1D-CNN model by using bacterial taxonomy data even with less then expected number of samples. Using explainable AI, nine bacteria were identified which the models find important for classification.

Conclusion:

The proposed method is robust and well adapted to taxonomy data in tabular form. It can be easily adapted to detect other diseases by using taxonomy data. The study also investigated the effect on barcode sequence for the classification, but the result showed that barcode sequences do not contribute to the bacterial taxonomy data for the estimation of CVD disease.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Intelligence-based medicine
Intelligence-based medicine Health Informatics
CiteScore
5.00
自引率
0.00%
发文量
0
审稿时长
187 days
期刊最新文献
Artificial intelligence in child development monitoring: A systematic review on usage, outcomes and acceptance Automatic characterization of cerebral MRI images for the detection of autism spectrum disorders DOTnet 2.0: Deep learning network for diffuse optical tomography image reconstruction Artificial intelligence in child development monitoring: A systematic review on usage, outcomes and acceptance Clustering polycystic ovary syndrome laboratory results extracted from a large internet forum with machine learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1