{"title":"基于关键部件公差的机床体积误差建模和预测","authors":"Jinwei Fan, Zhuang Li, Ri Pan, Kun Sun, Kai Chen","doi":"10.1016/j.aej.2024.10.051","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate volumetric error model is the basis for accuracy design. In this paper, a universal model for volumetric error prediction considering tolerance is proposed. Firstly, geometric error parameters are obtained by analysing the motion forms of key components. Secondly, the map between geometric error and tolerance is developed using Fourier function. Subsequently, the volumetric error prediction model (VEPM) is established based on key component tolerance. The model was applied to guide the development of machine tools. Finally, model validation experiments are carried out with two configurations of machine tools. The results show that, for the horizontal grinder, the predicted values for ±45° diagonal errors are 0–2.7 μm and 0–4.5 μm, which are consistent with the measured average values of 0.03–2.33 μm and −0.10–5.46 μm, respectively. Moreover, the predicted and measured values for +45° diagonal error of the vertical grinder are −15.0–0 μm and −15.07–0 μm, respectively. The experimental results illustrate the VEPM is effective and universal. The model has the potential to be applied to the design and development of machine tools.</div></div>","PeriodicalId":7484,"journal":{"name":"alexandria engineering journal","volume":"111 ","pages":"Pages 171-180"},"PeriodicalIF":6.2000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Volumetric error modeling and prediction for machine tools based on key component tolerance\",\"authors\":\"Jinwei Fan, Zhuang Li, Ri Pan, Kun Sun, Kai Chen\",\"doi\":\"10.1016/j.aej.2024.10.051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Accurate volumetric error model is the basis for accuracy design. In this paper, a universal model for volumetric error prediction considering tolerance is proposed. Firstly, geometric error parameters are obtained by analysing the motion forms of key components. Secondly, the map between geometric error and tolerance is developed using Fourier function. Subsequently, the volumetric error prediction model (VEPM) is established based on key component tolerance. The model was applied to guide the development of machine tools. Finally, model validation experiments are carried out with two configurations of machine tools. The results show that, for the horizontal grinder, the predicted values for ±45° diagonal errors are 0–2.7 μm and 0–4.5 μm, which are consistent with the measured average values of 0.03–2.33 μm and −0.10–5.46 μm, respectively. Moreover, the predicted and measured values for +45° diagonal error of the vertical grinder are −15.0–0 μm and −15.07–0 μm, respectively. The experimental results illustrate the VEPM is effective and universal. The model has the potential to be applied to the design and development of machine tools.</div></div>\",\"PeriodicalId\":7484,\"journal\":{\"name\":\"alexandria engineering journal\",\"volume\":\"111 \",\"pages\":\"Pages 171-180\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"alexandria engineering journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1110016824012055\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"alexandria engineering journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1110016824012055","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Volumetric error modeling and prediction for machine tools based on key component tolerance
Accurate volumetric error model is the basis for accuracy design. In this paper, a universal model for volumetric error prediction considering tolerance is proposed. Firstly, geometric error parameters are obtained by analysing the motion forms of key components. Secondly, the map between geometric error and tolerance is developed using Fourier function. Subsequently, the volumetric error prediction model (VEPM) is established based on key component tolerance. The model was applied to guide the development of machine tools. Finally, model validation experiments are carried out with two configurations of machine tools. The results show that, for the horizontal grinder, the predicted values for ±45° diagonal errors are 0–2.7 μm and 0–4.5 μm, which are consistent with the measured average values of 0.03–2.33 μm and −0.10–5.46 μm, respectively. Moreover, the predicted and measured values for +45° diagonal error of the vertical grinder are −15.0–0 μm and −15.07–0 μm, respectively. The experimental results illustrate the VEPM is effective and universal. The model has the potential to be applied to the design and development of machine tools.
期刊介绍:
Alexandria Engineering Journal is an international journal devoted to publishing high quality papers in the field of engineering and applied science. Alexandria Engineering Journal is cited in the Engineering Information Services (EIS) and the Chemical Abstracts (CA). The papers published in Alexandria Engineering Journal are grouped into five sections, according to the following classification:
• Mechanical, Production, Marine and Textile Engineering
• Electrical Engineering, Computer Science and Nuclear Engineering
• Civil and Architecture Engineering
• Chemical Engineering and Applied Sciences
• Environmental Engineering