Xinyan An , Nvfan Tang , Yilin Liu , Shiqiang Song , Chaoyue Chen , Guohao Han , Weizhen Li , Yong Zhang
{"title":"血管束结构聚合物复合材料具有防火、自我检测和热预警功能,可用于动力电池热管理","authors":"Xinyan An , Nvfan Tang , Yilin Liu , Shiqiang Song , Chaoyue Chen , Guohao Han , Weizhen Li , Yong Zhang","doi":"10.1016/j.compscitech.2024.110921","DOIUrl":null,"url":null,"abstract":"<div><div>The trend of miniaturization and integration poses challenges to the thermal management of electronic devices, requiring high thermal conductivity and potential fire safety, etc. In this study, inspired by plant vascular structure, we developed a polymer composite with a vertical vascular bundle structure via a sacrificial template method and subsequent assembly of transition metal carbides/nitrides (MXene) nanosheets and phytic acid (PA) coordinated cobalt ions (Co<sup>2+</sup>) complex. The embedded MXene and PA@Co exhibit multilayer multiscale structural features, forming heat transfer channels and protective cells within the composite. The resultant composites possess high out-of-plane thermal conductivity (∼1.54 W‧m<sup>−1</sup>‧k<sup>−1</sup>) and excellent flame retardancy, including self-extinguishing, and significantly reduced heat and smoke release. Interestingly, the MXene vascular bundle structure imparts heat early warning capabilities and intelligent damage self-detection, suggesting an effective means of preventing early-stage fires and real-time monitoring of composite structural and functional integrity. Such biomimetic strategies enable new insights into the designing of multifunctional, intelligent polymer composites.</div></div>","PeriodicalId":283,"journal":{"name":"Composites Science and Technology","volume":"259 ","pages":"Article 110921"},"PeriodicalIF":8.3000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vascular bundle-structured polymeric composites with fire-safe, self-detecting and heat warning capabilities for power batteries thermal management\",\"authors\":\"Xinyan An , Nvfan Tang , Yilin Liu , Shiqiang Song , Chaoyue Chen , Guohao Han , Weizhen Li , Yong Zhang\",\"doi\":\"10.1016/j.compscitech.2024.110921\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The trend of miniaturization and integration poses challenges to the thermal management of electronic devices, requiring high thermal conductivity and potential fire safety, etc. In this study, inspired by plant vascular structure, we developed a polymer composite with a vertical vascular bundle structure via a sacrificial template method and subsequent assembly of transition metal carbides/nitrides (MXene) nanosheets and phytic acid (PA) coordinated cobalt ions (Co<sup>2+</sup>) complex. The embedded MXene and PA@Co exhibit multilayer multiscale structural features, forming heat transfer channels and protective cells within the composite. The resultant composites possess high out-of-plane thermal conductivity (∼1.54 W‧m<sup>−1</sup>‧k<sup>−1</sup>) and excellent flame retardancy, including self-extinguishing, and significantly reduced heat and smoke release. Interestingly, the MXene vascular bundle structure imparts heat early warning capabilities and intelligent damage self-detection, suggesting an effective means of preventing early-stage fires and real-time monitoring of composite structural and functional integrity. Such biomimetic strategies enable new insights into the designing of multifunctional, intelligent polymer composites.</div></div>\",\"PeriodicalId\":283,\"journal\":{\"name\":\"Composites Science and Technology\",\"volume\":\"259 \",\"pages\":\"Article 110921\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Composites Science and Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0266353824004913\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266353824004913","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
Vascular bundle-structured polymeric composites with fire-safe, self-detecting and heat warning capabilities for power batteries thermal management
The trend of miniaturization and integration poses challenges to the thermal management of electronic devices, requiring high thermal conductivity and potential fire safety, etc. In this study, inspired by plant vascular structure, we developed a polymer composite with a vertical vascular bundle structure via a sacrificial template method and subsequent assembly of transition metal carbides/nitrides (MXene) nanosheets and phytic acid (PA) coordinated cobalt ions (Co2+) complex. The embedded MXene and PA@Co exhibit multilayer multiscale structural features, forming heat transfer channels and protective cells within the composite. The resultant composites possess high out-of-plane thermal conductivity (∼1.54 W‧m−1‧k−1) and excellent flame retardancy, including self-extinguishing, and significantly reduced heat and smoke release. Interestingly, the MXene vascular bundle structure imparts heat early warning capabilities and intelligent damage self-detection, suggesting an effective means of preventing early-stage fires and real-time monitoring of composite structural and functional integrity. Such biomimetic strategies enable new insights into the designing of multifunctional, intelligent polymer composites.
期刊介绍:
Composites Science and Technology publishes refereed original articles on the fundamental and applied science of engineering composites. The focus of this journal is on polymeric matrix composites with reinforcements/fillers ranging from nano- to macro-scale. CSTE encourages manuscripts reporting unique, innovative contributions to the physics, chemistry, materials science and applied mechanics aspects of advanced composites.
Besides traditional fiber reinforced composites, novel composites with significant potential for engineering applications are encouraged.