Ying Yu , Shaolong Han , Haoyu Wang , Gang Wei , Zheng Gu , Ping Han
{"title":"在玄武岩纤维上逐层装配氮化硼/聚乙烯亚胺/二甲苯分层夹层结构,以制造高性能环氧树脂复合材料","authors":"Ying Yu , Shaolong Han , Haoyu Wang , Gang Wei , Zheng Gu , Ping Han","doi":"10.1016/j.compscitech.2024.110931","DOIUrl":null,"url":null,"abstract":"<div><div>Interfacial adhesion directly affects the mechanical properties of basalt fiber (BF)-reinforced polymer composites. To construct a more superior interphase between BFs and epoxy resin (EP) than a weak interphase of the unmodified BF/EP, we propose a hierarchical sandwich structure consisting of sodium hydroxide–activated boron nitride (BN<sub>OH</sub>), polyethyleneimine (PEI), and MXene (MX, Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>) through facile layer-by-layer self-assembly. The fabricated BN<sub>OH</sub>/P/MX sandwich structure (P denoting “PEI”) can synergistically improve the interface adhesion by enhancing the mechanical interlocking and chemical bonding of the composites. When the composites reinforced by BF–BN<sub>OH</sub>/P/MX subject to the external loading, flexible PEI molecules allow two-dimensional (2D) rigid BN<sub>OH</sub> and MX nanosheets to slip at the interface by uncurling the molecular chains, dissipating a great amount of energy during the fracture progress. Meanwhile, the hierarchical BN<sub>OH</sub>/P/MX sandwich structure acts as an excellent interface and possesses multistage gradient modulus and wider thickness, uniformly and efficiently transferring the stress from the EP matrix to BFs. The interfacial shear strength, impact strength, and fracture toughness of BF–BN<sub>OH</sub>/P/MX-reinforced EP composite are substantially improved by 45.9 %, 60.6 %, and 148.9 %, respectively, compared with bare BF–based composites. This study can provide valuable references and inspirations for designing and constructing high-quality interfaces for high-strength and high-toughness BF structural materials, taking advantage of 2D materials.</div></div>","PeriodicalId":283,"journal":{"name":"Composites Science and Technology","volume":"259 ","pages":"Article 110931"},"PeriodicalIF":8.3000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Layer-by-layer assembling boron nitride/polyethyleneimine/MXene hierarchical sandwich structure onto basalt fibers for high-performance epoxy composites\",\"authors\":\"Ying Yu , Shaolong Han , Haoyu Wang , Gang Wei , Zheng Gu , Ping Han\",\"doi\":\"10.1016/j.compscitech.2024.110931\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Interfacial adhesion directly affects the mechanical properties of basalt fiber (BF)-reinforced polymer composites. To construct a more superior interphase between BFs and epoxy resin (EP) than a weak interphase of the unmodified BF/EP, we propose a hierarchical sandwich structure consisting of sodium hydroxide–activated boron nitride (BN<sub>OH</sub>), polyethyleneimine (PEI), and MXene (MX, Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>) through facile layer-by-layer self-assembly. The fabricated BN<sub>OH</sub>/P/MX sandwich structure (P denoting “PEI”) can synergistically improve the interface adhesion by enhancing the mechanical interlocking and chemical bonding of the composites. When the composites reinforced by BF–BN<sub>OH</sub>/P/MX subject to the external loading, flexible PEI molecules allow two-dimensional (2D) rigid BN<sub>OH</sub> and MX nanosheets to slip at the interface by uncurling the molecular chains, dissipating a great amount of energy during the fracture progress. Meanwhile, the hierarchical BN<sub>OH</sub>/P/MX sandwich structure acts as an excellent interface and possesses multistage gradient modulus and wider thickness, uniformly and efficiently transferring the stress from the EP matrix to BFs. The interfacial shear strength, impact strength, and fracture toughness of BF–BN<sub>OH</sub>/P/MX-reinforced EP composite are substantially improved by 45.9 %, 60.6 %, and 148.9 %, respectively, compared with bare BF–based composites. This study can provide valuable references and inspirations for designing and constructing high-quality interfaces for high-strength and high-toughness BF structural materials, taking advantage of 2D materials.</div></div>\",\"PeriodicalId\":283,\"journal\":{\"name\":\"Composites Science and Technology\",\"volume\":\"259 \",\"pages\":\"Article 110931\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Composites Science and Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0266353824005013\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266353824005013","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
Interfacial adhesion directly affects the mechanical properties of basalt fiber (BF)-reinforced polymer composites. To construct a more superior interphase between BFs and epoxy resin (EP) than a weak interphase of the unmodified BF/EP, we propose a hierarchical sandwich structure consisting of sodium hydroxide–activated boron nitride (BNOH), polyethyleneimine (PEI), and MXene (MX, Ti3C2Tx) through facile layer-by-layer self-assembly. The fabricated BNOH/P/MX sandwich structure (P denoting “PEI”) can synergistically improve the interface adhesion by enhancing the mechanical interlocking and chemical bonding of the composites. When the composites reinforced by BF–BNOH/P/MX subject to the external loading, flexible PEI molecules allow two-dimensional (2D) rigid BNOH and MX nanosheets to slip at the interface by uncurling the molecular chains, dissipating a great amount of energy during the fracture progress. Meanwhile, the hierarchical BNOH/P/MX sandwich structure acts as an excellent interface and possesses multistage gradient modulus and wider thickness, uniformly and efficiently transferring the stress from the EP matrix to BFs. The interfacial shear strength, impact strength, and fracture toughness of BF–BNOH/P/MX-reinforced EP composite are substantially improved by 45.9 %, 60.6 %, and 148.9 %, respectively, compared with bare BF–based composites. This study can provide valuable references and inspirations for designing and constructing high-quality interfaces for high-strength and high-toughness BF structural materials, taking advantage of 2D materials.
期刊介绍:
Composites Science and Technology publishes refereed original articles on the fundamental and applied science of engineering composites. The focus of this journal is on polymeric matrix composites with reinforcements/fillers ranging from nano- to macro-scale. CSTE encourages manuscripts reporting unique, innovative contributions to the physics, chemistry, materials science and applied mechanics aspects of advanced composites.
Besides traditional fiber reinforced composites, novel composites with significant potential for engineering applications are encouraged.