{"title":"开孔纳米非晶合金力学性能的尺寸效应及其原子起源","authors":"","doi":"10.1016/j.jnoncrysol.2024.123275","DOIUrl":null,"url":null,"abstract":"<div><div>Nanoporous amorphous alloys exhibit outstanding mechanical properties, including enhanced ductility, high strength-to-density ratio, and exceptional toughness. In this paper, atomistic models of nanoporous CuZr amorphous alloys (NP–CuZr AAs) with self-similar microstructures but varying ligament sizes are constructed. Molecular dynamics simulations are employed to examine the effects of ligament size on their mechanical properties. The yield strength, yield strain, and Young's modulus are found to be higher under tension than under compression. This tension-compression asymmetry stems from the surface effect, and it becomes more pronounced with decreasing ligament size. As the ligament size increases, the Young's modulus and compressive yield strength increase, while the tensile yield strength and ultimate tensile strength decrease. The tensile behavior comprises linear elastic deformation, strain-hardening, and ligament decay stages. During the ligament decay deformation stage, ligament necking and fracture are more severe with larger ligament sizes, resulting in relatively lower resistance stress.</div></div>","PeriodicalId":16461,"journal":{"name":"Journal of Non-crystalline Solids","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Size effect and its atomistic origin on the mechanical properties of open-cell nanoporous amorphous alloy\",\"authors\":\"\",\"doi\":\"10.1016/j.jnoncrysol.2024.123275\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Nanoporous amorphous alloys exhibit outstanding mechanical properties, including enhanced ductility, high strength-to-density ratio, and exceptional toughness. In this paper, atomistic models of nanoporous CuZr amorphous alloys (NP–CuZr AAs) with self-similar microstructures but varying ligament sizes are constructed. Molecular dynamics simulations are employed to examine the effects of ligament size on their mechanical properties. The yield strength, yield strain, and Young's modulus are found to be higher under tension than under compression. This tension-compression asymmetry stems from the surface effect, and it becomes more pronounced with decreasing ligament size. As the ligament size increases, the Young's modulus and compressive yield strength increase, while the tensile yield strength and ultimate tensile strength decrease. The tensile behavior comprises linear elastic deformation, strain-hardening, and ligament decay stages. During the ligament decay deformation stage, ligament necking and fracture are more severe with larger ligament sizes, resulting in relatively lower resistance stress.</div></div>\",\"PeriodicalId\":16461,\"journal\":{\"name\":\"Journal of Non-crystalline Solids\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Non-crystalline Solids\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022309324004526\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Non-crystalline Solids","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022309324004526","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
Size effect and its atomistic origin on the mechanical properties of open-cell nanoporous amorphous alloy
Nanoporous amorphous alloys exhibit outstanding mechanical properties, including enhanced ductility, high strength-to-density ratio, and exceptional toughness. In this paper, atomistic models of nanoporous CuZr amorphous alloys (NP–CuZr AAs) with self-similar microstructures but varying ligament sizes are constructed. Molecular dynamics simulations are employed to examine the effects of ligament size on their mechanical properties. The yield strength, yield strain, and Young's modulus are found to be higher under tension than under compression. This tension-compression asymmetry stems from the surface effect, and it becomes more pronounced with decreasing ligament size. As the ligament size increases, the Young's modulus and compressive yield strength increase, while the tensile yield strength and ultimate tensile strength decrease. The tensile behavior comprises linear elastic deformation, strain-hardening, and ligament decay stages. During the ligament decay deformation stage, ligament necking and fracture are more severe with larger ligament sizes, resulting in relatively lower resistance stress.
期刊介绍:
The Journal of Non-Crystalline Solids publishes review articles, research papers, and Letters to the Editor on amorphous and glassy materials, including inorganic, organic, polymeric, hybrid and metallic systems. Papers on partially glassy materials, such as glass-ceramics and glass-matrix composites, and papers involving the liquid state are also included in so far as the properties of the liquid are relevant for the formation of the solid.
In all cases the papers must demonstrate both novelty and importance to the field, by way of significant advances in understanding or application of non-crystalline solids; in the case of Letters, a compelling case must also be made for expedited handling.