{"title":"BTTAS:基于区块链的两级可转移验证方案,用于 VANET 中的 V2I 通信","authors":"Divya Rani, Sachin Tripathi","doi":"10.1016/j.compeleceng.2024.109767","DOIUrl":null,"url":null,"abstract":"<div><div>The progress of the Intelligent Transport System has significantly enhanced vehicle communication with both other vehicles and Road Side Units. This has become crucial due to the necessity for highly accurate information transmission while vehicles operate at high speeds. Additionally, the escalating vehicle count demands heightened processing speed, minimized superfluous computation, reduced data transmission delays, and decentralized storage solutions. Therefore, the proposed work involves a Blockchain-based Two-level Transferable Authentication Scheme (BTTAS) for secure V2I communication in Vehicular ad hoc networks. Unlike existing approaches that rely on centralized frameworks, the suggested model establishes a distributed environment utilizing a Consortium Blockchain furnished with a dedicated communication channel, ensuring the utmost confidentiality. Furthermore, a two-tier transferable authentication mechanism effectively curtails extraneous computations on the vehicles’ end. The Consortium Blockchain is implemented using the Hyperledger Fabric and its performance evaluation is conducted via Hyperledger Caliper. There is an ECC-based protocol for secure communication. The proposed work includes a ROR model-based Formal Analysis, simulation using the Scyther tool, and Informal Analysis. Additionally, by analyzing blockchain performance with different transaction volumes and rates, along with comparative analysis, the proposed work demonstrates enhanced effectiveness and security.</div></div>","PeriodicalId":50630,"journal":{"name":"Computers & Electrical Engineering","volume":"120 ","pages":"Article 109767"},"PeriodicalIF":4.0000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"BTTAS: Blockchain-based Two-Level Transferable Authentication Scheme for V2I communication in VANET\",\"authors\":\"Divya Rani, Sachin Tripathi\",\"doi\":\"10.1016/j.compeleceng.2024.109767\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The progress of the Intelligent Transport System has significantly enhanced vehicle communication with both other vehicles and Road Side Units. This has become crucial due to the necessity for highly accurate information transmission while vehicles operate at high speeds. Additionally, the escalating vehicle count demands heightened processing speed, minimized superfluous computation, reduced data transmission delays, and decentralized storage solutions. Therefore, the proposed work involves a Blockchain-based Two-level Transferable Authentication Scheme (BTTAS) for secure V2I communication in Vehicular ad hoc networks. Unlike existing approaches that rely on centralized frameworks, the suggested model establishes a distributed environment utilizing a Consortium Blockchain furnished with a dedicated communication channel, ensuring the utmost confidentiality. Furthermore, a two-tier transferable authentication mechanism effectively curtails extraneous computations on the vehicles’ end. The Consortium Blockchain is implemented using the Hyperledger Fabric and its performance evaluation is conducted via Hyperledger Caliper. There is an ECC-based protocol for secure communication. The proposed work includes a ROR model-based Formal Analysis, simulation using the Scyther tool, and Informal Analysis. Additionally, by analyzing blockchain performance with different transaction volumes and rates, along with comparative analysis, the proposed work demonstrates enhanced effectiveness and security.</div></div>\",\"PeriodicalId\":50630,\"journal\":{\"name\":\"Computers & Electrical Engineering\",\"volume\":\"120 \",\"pages\":\"Article 109767\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Electrical Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0045790624006943\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Electrical Engineering","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045790624006943","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
BTTAS: Blockchain-based Two-Level Transferable Authentication Scheme for V2I communication in VANET
The progress of the Intelligent Transport System has significantly enhanced vehicle communication with both other vehicles and Road Side Units. This has become crucial due to the necessity for highly accurate information transmission while vehicles operate at high speeds. Additionally, the escalating vehicle count demands heightened processing speed, minimized superfluous computation, reduced data transmission delays, and decentralized storage solutions. Therefore, the proposed work involves a Blockchain-based Two-level Transferable Authentication Scheme (BTTAS) for secure V2I communication in Vehicular ad hoc networks. Unlike existing approaches that rely on centralized frameworks, the suggested model establishes a distributed environment utilizing a Consortium Blockchain furnished with a dedicated communication channel, ensuring the utmost confidentiality. Furthermore, a two-tier transferable authentication mechanism effectively curtails extraneous computations on the vehicles’ end. The Consortium Blockchain is implemented using the Hyperledger Fabric and its performance evaluation is conducted via Hyperledger Caliper. There is an ECC-based protocol for secure communication. The proposed work includes a ROR model-based Formal Analysis, simulation using the Scyther tool, and Informal Analysis. Additionally, by analyzing blockchain performance with different transaction volumes and rates, along with comparative analysis, the proposed work demonstrates enhanced effectiveness and security.
期刊介绍:
The impact of computers has nowhere been more revolutionary than in electrical engineering. The design, analysis, and operation of electrical and electronic systems are now dominated by computers, a transformation that has been motivated by the natural ease of interface between computers and electrical systems, and the promise of spectacular improvements in speed and efficiency.
Published since 1973, Computers & Electrical Engineering provides rapid publication of topical research into the integration of computer technology and computational techniques with electrical and electronic systems. The journal publishes papers featuring novel implementations of computers and computational techniques in areas like signal and image processing, high-performance computing, parallel processing, and communications. Special attention will be paid to papers describing innovative architectures, algorithms, and software tools.